查看原文
其他

非常全的通俗易懂 Python 魔法方法指南(下)

点击上方“Python编程时光”,选择“加为星标

第一时间关注Python技术干货!


作者:Rafe Kettler

翻译:hit9

来源:https://pyzh.readthedocs.io/en/latest/python-magic-methods-guide.html


你接着上一篇魔法方法的分享,没看过上一篇文章的可以点这里:

非常全的通俗易懂 Python 魔法方法指南(上)


06. 反射

你可以通过定义魔法方法来控制用于反射的内建函数 isinstance 和 issubclass 的行为。下面是对应的魔法方法:

  • __instancecheck__(self, instance)

    检查一个实例是否是你定义的类的一个实例(例如 isinstance(instance, class) )。

  • __subclasscheck__(self, subclass)

    检查一个类是否是你定义的类的子类(例如 issubclass(subclass, class) )。

这几个魔法方法的适用范围看起来有些窄,事实也正是如此。我不会在反射魔法方法上花费太多时间,因为相比其他魔法方法它们显得不是很重要。但是它们展示了在Python中进行面向对象编程(或者总体上使用Python进行编程)时很重要的一点:不管做什么事情,都会有一个简单方法,不管它常用不常用。这些魔法方法可能看起来没那么有用,但是当你真正需要用到它们的时候,你会感到很幸运,因为它们还在那儿(也因为你阅读了这本指南!)

07. 抽象基类

请参考 http://docs.python.org/2/library/abc.html

08. 可调用的对象

你可能已经知道了,在Python中,函数是一等的对象。这意味着它们可以像其他任何对象一样被传递到函数和方法中,这是一个十分强大的特性。

Python中一个特殊的魔法方法允许你自己类的对象表现得像是函数,然后你就可以“调用”它们,把它们传递到使用函数做参数的函数中,等等等等。这是另一个强大而且方便的特性,让使用Python编程变得更加幸福。

  • __call__    (self, [args…])

    允许类的一个实例像函数那样被调用。本质上这代表了 x() 和 x.__call__() 是相同的。注意 __call__ 可以有多个参数,这代表你可以像定义其他任何函数一样,定义 __call__ ,喜欢用多少参数就用多少。

__call__ 在某些需要经常改变状态的类的实例中显得特别有用。“调用”这个实例来改变它的状态,是一种更加符合直觉,也更加优雅的方法。一个表示平面上实体的类是一个不错的例子:

class Entity:
        '''表示一个实体的类,调用它的实例
        可以更新实体的位置'''


        def __init__(self, size, x, y):
                self.x, self.y = x, y
                self.size = size

        def __call__(self, x, y):
                '''改变实体的位置'''
                self.x, self.y = x, y

09. 上下文管理器

在Python 2.5中引入了一个全新的关键词,随之而来的是一种新的代码复用方法—— with 声明。上下文管理的概念在Python中并不是全新引入的(之前它作为标准库的一部分实现),直到PEP 343被接受,它才成为一种一级的语言结构。可能你已经见过这种写法了:

with open('foo.txt'as bar:
    # 使用bar进行某些操作

当对象使用 with 声明创建时,上下文管理器允许类做一些设置和清理工作。上下文管理器的行为由下面两个魔法方法所定义:

  • __enter__(self)

    定义使用 with 声明创建的语句块最开始上下文管理器应该做些什么。注意 __enter__ 的返回值会赋给 with 声明的目标,也就是 as 之后的东西。

  • __exit__(self, exception_type, exception_value, traceback)

    定义当 with 声明语句块执行完毕(或终止)时上下文管理器的行为。它可以用来处理异常,进行清理,或者做其他应该在语句块结束之后立刻执行的工作。如果语句块顺利执行, exception_type , exception_value 和 traceback 会是 None 。否则,你可以选择处理这个异常或者让用户来处理。如果你想处理异常,确保 __exit__ 在完成工作之后返回 True 。如果你不想处理异常,那就让它发生吧。

对一些具有良好定义的且通用的设置和清理行为的类,__enter____exit__会显得特别有用。你也可以使用这几个方法来创建通用的上下文管理器,用来包装其他对象。下面是一个例子:

class Closer:
    '''一个上下文管理器,可以在with语句中
    使用close()自动关闭对象'''


    def __init__(self, obj):
        self.obj = obj

    def __enter__(self, obj):
        return self.obj # 绑定到目标

    def __exit__(self, exception_type, exception_value, traceback):
        try:
                self.obj.close()
        except AttributeError: # obj不是可关闭的
                print 'Not closable.'
                return True # 成功地处理了异常

这是一个 Closer 在实际使用中的例子,使用一个FTP连接来演示(一个可关闭的socket):

>>> from magicmethods import Closer
>>> from ftplib import FTP
>>> with Closer(FTP('ftp.somesite.com')) as conn:
...         conn.dir()
...
# 为了简单,省略了某些输出
>>> conn.dir()
# 很长的 AttributeError 信息,不能使用一个已关闭的连接
>>> with Closer(int(5)) as i:
...         i += 1
...
Not closable.
>>> i
6

看到我们的包装器是如何同时优雅地处理正确和不正确的调用了吗?这就是上下文管理器和魔法方法的力量。Python标准库包含一个 contextlib 模块,里面有一个上下文管理器 contextlib.closing() 基本上和我们的包装器完成的是同样的事情(但是没有包含任何当对象没有close()方法时的处理)。

10. 创建描述符对象

描述符是一个类,当使用取值,赋值和删除 时它可以改变其他对象。描述符不是用来单独使用的,它们需要被一个拥有者类所包含。描述符可以用来创建面向对象数据库,以及创建某些属性之间互相依赖的类。描述符在表现具有不同单位的属性,或者需要计算的属性时显得特别有用(例如表现一个坐标系中的点的类,其中的距离原点的距离这种属性)。

要想成为一个描述符,一个类必须具有实现 __get__ , __set____delete__ 三个方法中至少一个。

让我们一起来看一看这些魔法方法:

  • __get__(self, instance, owner)

    定义当试图取出描述符的值时的行为。instance 是拥有者类的实例, owner 是拥有者类本身。

  • __set__(self, instance, owner)

    定义当描述符的值改变时的行为。instance 是拥有者类的实例, value 是要赋给描述符的值。

  • __delete__(self, instance, owner)

    定义当描述符的值被删除时的行为。instance 是拥有者类的实例

现在,来看一个描述符的有效应用:单位转换:

class Meter(object):
    '''米的描述符。'''

    def __init__(self, value=0.0):
        self.value = float(value)
    def __get__(self, instance, owner):
        return self.value
    def __set__(self, instance, owner):
            self.value = float(value)

class Foot(object):
    '''英尺的描述符。'''

    def __get__(self, instance, owner):
            return instance.meter * 3.2808
    def __set__(self, instance, value):
            instance.meter = float(value) / 3.2808

class Distance(object):
    '''用于描述距离的类,包含英尺和米两个描述符。'''
    meter = Meter()
    foot = Foot()

11. 拷贝

有些时候,特别是处理可变对象时,你可能想拷贝一个对象,改变这个对象而不影响原有的对象。这时就需要用到Python的 copy 模块了。然而(幸运的是),Python模块并不具有感知能力, 因此我们不用担心某天基于Linux的机器人崛起。但是我们的确需要告诉Python如何有效率地拷贝对象。

  • __copy__(self)

    定义对类的实例使用 copy.copy() 时的行为。copy.copy() 返回一个对象的浅拷贝,这意味着拷贝出的实例是全新的,然而里面的数据全都是引用的。也就是说,对象本身是拷贝的,但是它的数据还是引用的(所以浅拷贝中的数据更改会影响原对象)。

  • __deepcopy__(self, memodict=)

    定义对类的实例使用 copy.deepcopy() 时的行为。copy.deepcopy() 返回一个对象的深拷贝,这个对象和它的数据全都被拷贝了一份。memodict 是一个先前拷贝对象的缓存,它优化了拷贝过程,而且可以防止拷贝递归数据结构时产生无限递归。当你想深拷贝一个单独的属性时,在那个属性上调用 copy.deepcopy() ,使用 memodict 作为第一个参数。

这些魔法方法有什么用武之地呢?像往常一样,当你需要比默认行为更加精确的控制时。例如,如果你想拷贝一个对象,其中存储了一个字典作为缓存(可能会很大),拷贝缓存可能是没有意义的。如果这个缓存可以在内存中被不同实例共享,那么它就应该被共享。

12. Pickling

如果你和其他的Python爱好者共事过,很可能你已经听说过Pickling了。Pickling是Python数据结构的序列化过程,当你想存储一个对象稍后再取出读取时,Pickling会显得十分有用。然而它同样也是担忧和混淆的主要来源。

Pickling是如此的重要,以至于它不仅仅有自己的模块( pickle ),还有自己的协议和魔法方法。首先,我们先来简要的介绍一下如何pickle已存在的对象类型(如果你已经知道了,大可跳过这部分内容)。

12.1 小试牛刀

我们一起来pickle吧。假设你有一个字典,你想存储它,稍后再取出来。你可以把它的内容写入一个文件,小心翼翼地确保使用了正确地格式,要把它读取出来,你可以使用 exec() 或处理文件输入。但是这种方法并不可靠:如果你使用纯文本来存储重要数据,数据很容易以多种方式被破坏或者修改,导致你的程序崩溃,更糟糕的情况下,还可能在你的计算机上运行恶意代码。因此,我们要pickle它:

import pickle

data = {'foo': [1,2,3],
                'bar': ('Hello''world!'),
                'baz': True}
jar = open('data.pkl''wb')
pickle.dump(data, jar) # 将pickle后的数据写入jar文件
jar.close()

过了几个小时,我们想把它取出来,我们只需要反pickle它:

import pickle

pkl_file = open('data.pkl''rb'# 与pickle后的数据连接
data = pickle.load(pkl_file) # 把它加载进一个变量
print data
pkl_file.close()

将会发生什么?正如你期待的,它就是我们之前的 data 。

现在,还需要谨慎地说一句:pickle并不完美。Pickle文件很容易因为事故或被故意的破坏掉。Pickling或许比纯文本文件安全一些,但是依然有可能被用来运行恶意代码。而且它还不支持跨Python版本,所以不要指望分发pickle对象之后所有人都能正确地读取。然而不管怎么样,它依然是一个强有力的工具,可以用于缓存和其他类型的持久化工作。

12.2 Pickle你的对象

Pickle不仅仅可以用于内建类型,任何遵守pickle协议的类都可以被pickle。Pickle协议有四个可选方法,可以让类自定义它们的行为(这和C语言扩展略有不同,那不在我们的讨论范围之内)。

  • __getinitargs__(self)

    如果你想让你的类在反pickle时调用 __init__ ,你可以定义 __getinitargs__(self) ,它会返回一个参数元组,这个元组会传递给 __init__ 。注意,这个方法只能用于旧式类。

  • __getnewargs__(self)

    对新式类来说,你可以通过这个方法改变类在反pickle时传递给 __new__ 的参数。这个方法应该返回一个参数元组。

  • __getstate__(self)

    你可以自定义对象被pickle时被存储的状态,而不使用对象的 __dict__ 属性。这个状态在对象被反pickle时会被 __setstate__ 使用。

  • __setstate__(self)

    当一个对象被反pickle时,如果定义了 __setstate__ ,对象的状态会传递给这个魔法方法,而不是直接应用到对象的 __dict__ 属性。这个魔法方法和 __getstate__ 相互依存:当这两个方法都被定义时,你可以在Pickle时使用任何方法保存对象的任何状态。

  • __reduce__(self)

    当定义扩展类型时(也就是使用Python的C语言API实现的类型),如果你想pickle它们,你必须告诉Python如何pickle它们。reduce 被定义之后,当对象被Pickle时就会被调用。它要么返回一个代表全局名称的字符串,Pyhton会查找它并pickle,要么返回一个元组。这个元组包含2到5个元素,其中包括:一个可调用的对象,用于重建对象时调用;一个参数元素,供那个可调用对象使用;被传递给 __setstate__ 的状态(可选);一个产生被pickle的列表元素的迭代器(可选);一个产生被pickle的字典元素的迭代器(可选);

  • __reduce_ex__(self)

    __reduce_ex__ 的存在是为了兼容性。如果它被定义,在pickle时 __reduce_ex__ 会代替 __reduce__ 被调用。__reduce__ 也可以被定义,用于不支持 __reduce_ex__ 的旧版pickle的API调用。

12.3 一个例子

我们的例子是 Slate ,它会记住它的值曾经是什么,以及那些值是什么时候赋给它的。然而 每次被pickle时它都会变成空白,因为当前的值不会被存储:

import time

class Slate:
        '''存储一个字符串和一个变更日志的类
        每次被pickle都会忘记它当前的值'
''

        def __init__(self, value):
                self.value = value
                self.last_change = time.asctime()
                self.history = {}

        def change(self, new_value):
                # 改变当前值,将上一个值记录到历史
                self.history[self.last_change] = self.value
                self.value = new_value)
                self.last_change = time.asctime()

        def print_change(self):
                print 'Changelog for Slate object:'
                for k,v in self.history.items():
                        print '%s\t %s' % (k,v)

        def __getstate__(self):
                # 故意不返回self.value或self.last_change
                # 我们想在反pickle时得到一个空白的slate
                return self.history

        def __setstate__(self):
                # 使self.history = slate,last_change
                # 和value为未定义
                self.history = state
                self.value, self.last_change = None, None

总结在最后

这本指南的目标是使所有阅读它的人都能有所收获,无论他们有没有使用Python或者进行面向对象编程的经验。如果你刚刚开始学习Python,你会得到宝贵的基础知识,了解如何写出具有丰富特性的,优雅而且易用的类。如果你是中级的Python程序员,你或许能掌握一些新的概念和技巧,以及一些可以减少代码行数的好办法。如果你是专家级别的Python爱好者,你又重新复习了一遍某些可能已经忘掉的知识,也可能顺便了解了一些新技巧。无论你的水平怎样,我希望这趟遨游Python特殊方法的旅行,真的对你产生了魔法般的效果(实在忍不住不说最后这个双关)。





推荐阅读



教你如何阅读 Python 开源项目代码

怎样才能写好一个 Python 函数

记一次Linux被入侵,服务器变“矿机”全过程

实战讲解:Python 性能分析与优化实践

删除系统 Python 引发的惨案





留言送书




活动介绍走心留言,直接送书
今日赠书:《Pyhton自动化测试实战》
赞助商:北京大学出版社
本书的写作初衷是为了帮助更多功能测试人员转型自动化测试方向。在转型过程中,主流自动化测试技术和应用场景的结合是非常重要的一环。本书从自动化测试理论入手,全面地阐述自动化测试的意义及实施过程。全文以Python语言驱动,结合真实案例分别对主流自动化测试工具Selenium、Robot Framework、Postman、Python+Requests、Appium等进行系统讲解。通过学习本书,读者可以快速掌握主流自动化测试技术,并帮助读者丰富测试思维,提高Python编码能力。
本书实用性强,不仅是转型自动化测试方向的一本案头书,也是一本特别好用、实用的操练手册。


上期获奖读者

恭喜上一期幸运读者 @历历在目,感谢这位朋友的建议。


昨天新开了一个专门写 Go语言的号:Go编程时光,以后关于 Go 的文章都会在那里更新。那个号会佛系更,但文章都会自己写,保证原创。小伙伴可以去看看。




今日留言主题

看完这两篇魔法方法,你们还觉得 Python 简单吗?感觉语法糖太多了,永远也学不完的样子。



    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存