中考系统复习(分知识点)例题解析系列(26)——四边形(2)
声明:“初中数学延伸课堂”的所有文章,版权所有。欢迎并感谢朋友们分享和转发,但未经许可,不得在任何公共场合使用、开发及转载,违者必究!
建议阅读:如何快速查找到“初中数学延伸课堂”的相关文章(直接点击打开).
打开微信,点击“发现”,点击“搜索”,再点击“资讯(这一步骤最重要)“,在跳出的对话框中输入“初中数学延伸课堂”,然后点击“初中数学延伸课堂”,继续输入“关键词”(如:福州),再点击“搜索”,就会得到所有标题或内容中含”福州“的文章,类似于“百度”搜索.
如果您还不会操作,建议阅读文章:如何快速查找到“初中数学延伸课堂”的相关文章(直接点击打开).
【能力要求】
1.矩形的一条对角线把矩形分成两个全等的直角三角形,矩形的两条对角线把矩形分成两对全等的等腰三角形.因此,很多关于矩形的问题,往往可以运用直角三角形和等腰三角形的知识来解决.
2.由于菱形的一条对角线把菱形分成两个全等的等腰三角形或四个全等的小直角三角形,所以有关菱形的一些证明或计算问题也经常可以应用等腰三角形或直角三角形的知识来解决.
【精典例题解析】
例1.如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,求四边形AECF的周长.
分析:根据菱形的对角线平分一组对角可得∠BAC=∠BCA,易证BE=AB,然后求出EC,同理可得AF,然后判断出四边形AECF是平行四边形,再根据周长的定义列式计算即可得解.
解:菱形ABCD中,
∠BAC=∠BCA,∵AE⊥AC,
∴∠BAC+∠BAE=∠BCA+∠E=90°,
∴∠BAE=∠E,∴BE=AB=4,∴EC=BE+BC=4+4=8,
同理可得AF=8,
∵AD∥BC,
∴四边形AECF是平行四边形,
∴四边形AECF的周长=2(AE+EC)=2(3+8)=22.
例2.如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,求折痕EF的长.
分析:设BE=x,表示出CE=16﹣x,根据翻折的性质可得AE=CE,然后在Rt△ABE中,利用勾股定理列出方程求出x,再根据翻折的性质可得∠AEF=∠CEF,易证AE=AF,过点E作EH⊥AD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.
解:如下图示:
设BE=x,则CE=BC﹣BE=16﹣x,
∵沿EF翻折后点C与点A重合,
∴AE=CE=16﹣x,
在Rt△ABE中,AB2+BE2=AE2,
即82+x2=(16﹣x)2,解得x=6,
∴AE=16﹣6=10,
由翻折的性质得,∠AEF=∠CEF,
∵矩形ABCD的对边AD∥BC,
∴∠AFE=∠CEF,
∴∠AEF=∠AFE,
∴AE=AF=10,
过点E作EH⊥AD于H,
则四边形ABEH是矩形,
∴EH=AB=8,AH=BE=6,
∴FH=AF﹣AH=10﹣6=4,
在Rt△EFH中,
(别忘了给作者一个鼓励,点个赞哦!)
特别说明:进入公众号,回复“1,2,3…14,888”中的任意一个”数“,可查找到相应资料.
强烈推荐:
《顶尖中考微专题》例、习题视频讲解(共1487分钟)—与书配套视频