中考系统复习(分知识点)例题解析系列(31)——锐角三角函数(2)
声明:“初中数学延伸课堂”的所有文章,版权所有。欢迎并感谢朋友们分享和转发,但未经许可,不得在任何公共场合使用、开发及转载,违者必究!
建议阅读:如何快速查找到“初中数学延伸课堂”的相关文章(直接点击打开).
打开微信,点击“发现”,点击“搜索”,再点击“资讯(这一步骤最重要)“,在跳出的对话框中输入“初中数学延伸课堂”,然后点击“初中数学延伸课堂”,继续输入“关键词”(如:福州),再点击“搜索”,就会得到所有标题或内容中含”福州“的文章,类似于“百度”搜索.
如果您还不会操作,建议阅读文章:如何快速查找到“初中数学延伸课堂”的相关文章(直接点击打开).
【能力要求】
1.解直角三角形的应用,涉及到内容包括航空、航海、工程、测量等领域。要求能灵活地运用解直角三角形的有关知识,解决这些实际问题.熟悉仰角、俯角、坡度、方位角等概念,
2.常用的方法是通过数形结合、建立解直角三角形的数学模型.
【精典例题解析】
例1.如图,塔AB和楼CD的水平距离为80米,从楼顶C处及楼底D处测得塔顶A的仰角分别为450和600,试求塔高与楼高(精确到0.01米).(参考数据:√2=1.4142…,√3=1.732…)
分析 此题可先通过解Rt△ABD求出塔高AB,再利用CE=BD=80米,解Rt△AEC求出AE,最后求出CD=BE=AB-AE。
例2.如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(√3取1.73)
(1)求楼房的高度约为多少米?
(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.
分析(1)在Rt△ABE中,由tan60°=AB/AE=AB/10,即可求出AB=10•tan60°=17.3米;
(2)假设没有台阶,当α=45°时,从点B射下的光线与地面AD的交点为点F,与MC的交点为点H.由∠BFA=45°,可得AF=AB=17.3米,那么CF=AF﹣AC=0.1米,CH=CF=0.1米,所以大楼的影子落在台阶MC这个侧面上,故小猫仍可以晒到太阳.
解:如下图示:
(1)当α=60°时,在Rt△ABE中,
∵tan60°AB/AE=AB/10.
∴AB=10•tan60°=10√3
≈10×1.73=17.3米.
即楼房的高度约为17.3米;
(2)当α=45°时,小猫仍可以晒到太阳.
理由如下:假设没有台阶,当α=45°时,从点B射下的光线与地面AD的交点为点F,与MC的交点为点H.
∵∠BFA=45°, ∴tan45°=AB/AF=1,
此时的影长AF=AB=17.3米,
∴CF=AF﹣AC=17.3﹣17.2=0.1米,
∴CH=CF=0.1米,
∴大楼的影子落在台阶MC这个侧面上,
∴小猫仍可以晒到太阳.
(别忘了给作者一个鼓励,点个赞哦!)
特别说明:进入公众号,回复“1,2,3…14,888”中的任意一个”数“,可查找到相应资料.
强烈推荐:
《顶尖中考微专题》例、习题视频讲解(共1487分钟)—与书配套视频