其他
【他山之石】神经网络学习 | 鸢尾花分类的实现
“他山之石,可以攻玉”,站在巨人的肩膀才能看得更高,走得更远。在科研的道路上,更需借助东风才能更快前行。为此,我们特别搜集整理了一些实用的代码链接,数据集,软件,编程技巧等,开辟“他山之石”专栏,助你乘风破浪,一路奋勇向前,敬请关注。
地址:https://www.zhihu.com/people/lou-xia-xiao-hei-49-69
01
02
03
import tensorflow as tf
w = tf.Variable(tf.constant(5, dtype=tf.float32))
lr = 0.2
epoch = 40
for epoch in range(epoch): # for epoch 定义顶层循环,表示对数据集循环epoch次, 此例数据集数据仅有1个w,初始化时候constant赋值为5, 循环40次迭代。
with tf.GradientTape() as tape: # with结构到grads框起了梯度的计算过程。
loss = tf.square(w + 1)
grads = tape.gradient(loss, w) # .gradient函数告知谁对谁求导
w.assign_sub(lr * grads) # .assign_sub 对变量做自减 即:w -= lr*grads 即 w = w - lr*grads
print("After %s epoch,w is %f,loss is %f" % (epoch, w.numpy(), loss))
04
import tensorflow as tf
a = tf.constant([1,5],dtype=tf.int64) #创建1阶张量[1,5],指定数据类型为64位整型
print(a) #打印出a
print(a.dtype) #打印出a的数据类型
print(a.shape) #打印出a的形状
import tensorflow as tf
import numpy as np
a = np.arange(0, 5)
b = tf.convert_to_tensor(a, dtype=tf.int64)
print("a:", a)
print("b:", b)
import tensorflow as tf
a = tf.zeros([2,3])
b = tf.ones(4)
c = tf.fill([2,2],9)
print(a)
print(b)
print(c)
生成正态分布的随机数,默认均值为0,标准差为1:tf.random.normal(维度,mean=均值,stddev=标准差) 生成截断式正态分布的随机数:tf.random_truncated_normal(维度,mean=均值,stddev=标准差)
import tensorflow as tf
d = tf.random.normal([2, 2], mean=0.5, stddev=1)
print("d:", d)
e = tf.random.truncated_normal([2, 2], mean=0.5, stddev=1)
print("e:", e)
import tensorflow as tf
f = tf.random.uniform([2, 2], minval=0, maxval=1)
print("f:", f)
With tf.GradientTape( ) as tape:
若干计算过程
grad = tape.gradient(函数,对谁求导)
import tensorflow as tf
with tf.GradientTape() as tape:
x = tf.Variable(tf.constant(3.0))
y = tf.pow(x, 2)
grad = tape.gradient(y, x)
print(grad)
seq = ['one', 'two', 'three'] #创建列表
for i, element in enumerate(seq): #遍历元素
print(i, element)
import tensorflow as tf
classes = 3
labels = tf.constant([1, 0, 2]) # 输入的元素值最小为0,最大为2
output = tf.one_hot(labels, depth=classes) #赋值3分类
print("result of labels1:", output)
print("\n")
import tensorflow as tf
y = tf.constant([1.01, 2.01, -0.66])
y_pro = tf.nn.softmax(y)
print("After softmax, y_pro is:", y_pro) # y_pro 符合概率分布
print("The sum of y_pro:", tf.reduce_sum(y_pro)) # 通过softmax后,所有概率加起来 和为1
import tensorflow as tf
x = tf.Variable(4)
x.assign_sub(1)
print("x:", x) # 4-1=3
import numpy as np
import tensorflow as tf
test = np.array([[1, 2, 3], [2, 3, 4], [5, 4, 3], [8, 7, 2]])
print("test:\n", test)
print("每一列的最大值的索引:", tf.argmax(test, axis=0)) # 返回每一列最大值的索引
print("每一行的最大值的索引", tf.argmax(test, axis=1)) # 返回每一行最大值的索引
结果:
05
#-------------------第0部分 准备部分-------------------
# -*- coding: UTF-8 -*-
# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线
#tensor flow2.3 Python3.8
#说明:代码思路来源于北大神经网络课程,此处仅做复现
# 导入所需模块
import tensorflow as tf
from sklearn import datasets #从sklearn包detasets读入数据集,具体如1
from matplotlib import pyplot as plt
import numpy as np
#-------------------第1部分 数据集读入-------------------
# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data #返回iris数据集所有输入特征
y_data = datasets.load_iris().target #返回iris数据集所有标签
#-------------------第2部分 数据集乱序-------------------
# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116) # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)
#-------------------第3部分 数据集分割-------------------
# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]
# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)
#-------------------第4部分 配成对,分别喂入-------------------
# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
#---------------第5部分 定义神经网络中的所有可训练参数---------------
# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))
lr = 0.1 # 学习率为0.1
train_loss_results = [] # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = [] # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500 # 循环500轮
loss_all = 0 # 每轮分4个step,loss_all记录四个step生成的4个loss的和
#-------------------第6部分 嵌套循环迭代,显示当前loss-------------------
# 训练部分
for epoch in range(epoch): #数据集级别的循环,每个epoch循环一次数据集
for step, (x_train, y_train) in enumerate(train_db): #batch级别的循环 ,每个step循环一个batch
with tf.GradientTape() as tape: # with结构记录梯度信息
y = tf.matmul(x_train, w1) + b1 # 神经网络乘加运算
y = tf.nn.softmax(y) # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
y_ = tf.one_hot(y_train, depth=3) # 将标签值转换为独热码格式,方便计算loss和accuracy
loss = tf.reduce_mean(tf.square(y_ - y)) # 采用均方误差损失函数mse = mean(sum(y-out)^2)
loss_all += loss.numpy() # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
# 计算loss对各个参数的梯度
grads = tape.gradient(loss, [w1, b1])
# 实现梯度更新 w1 = w1 - lr * w1_grad b = b - lr * b_grad
w1.assign_sub(lr * grads[0]) # 参数w1自更新
b1.assign_sub(lr * grads[1]) # 参数b自更新
# 每个epoch,打印loss信息
print("Epoch {}, loss: {}".format(epoch, loss_all/4))
train_loss_results.append(loss_all / 4) # 将4个step的loss求平均记录在此变量中
loss_all = 0 # loss_all归零,为记录下一个epoch的loss做准备
#-------------------第7部分 计算前传准确率,显示当前acc-------------------
# 测试部分
# total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
total_correct, total_number = 0, 0
for x_test, y_test in test_db:
# 使用更新后的参数进行预测
y = tf.matmul(x_test, w1) + b1
y = tf.nn.softmax(y)
pred = tf.argmax(y, axis=1) # 返回y中最大值的索引,即预测的分类
# 将pred转换为y_test的数据类型
pred = tf.cast(pred, dtype=y_test.dtype)
# 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
# 将每个batch的correct数加起来
correct = tf.reduce_sum(correct)
# 将所有batch中的correct数加起来
total_correct += int(correct)
# total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
total_number += x_test.shape[0]
# 总的准确率等于total_correct/total_number
acc = total_correct / total_number
test_acc.append(acc)
print("Test_acc:", acc)
print("--------------------------")
#-------------------第8部分 acc/loss可视化-------------------
# 绘制 loss 曲线
plt.title('Loss Function Curve') # 图片标题
plt.xlabel('Epoch') # x轴变量名称
plt.ylabel('Loss') # y轴变量名称
plt.plot(train_loss_results, label="$Loss$") # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend() # 画出曲线图标
plt.show() # 画出图像
# 绘制 Accuracy 曲线
plt.title('Acc Curve') # 图片标题
plt.xlabel('Epoch') # x轴变量名称
plt.ylabel('Acc') # y轴变量名称
plt.plot(test_acc, label="$Accuracy$") # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()
损失函数曲线
本文目的在于学术交流,并不代表本公众号赞同其观点或对其内容真实性负责,版权归原作者所有,如有侵权请告知删除。
“他山之石”历史文章
Pytorch 基础-tensor 数据结构
Transformer风险评分:实体嵌入+注意力机制
Pytorch:eval()的用法比较
ONNX模型文件->可执行文件 C Runtime通路 具体实现方法
Pytorch mixed precision 概述(混合精度)
Weights & Biases (兼容多种深度学习框架的可视化工具WB中文简介)
GCN实现及其中的归一化
Pytorch Lightning 完全攻略
Tensorflow之TFRecord的原理和使用心得
从零开始实现一个卷积神经网络
斯坦福大规模网络数据集
超轻量的YOLO-Nano
MMAction2: 新一代视频理解工具箱
TensorFlow神经网络实现二分类的正确姿势
人类早期驯服野生机器学习模型的珍贵资料
更多他山之石专栏文章,
请点击文章底部“阅读原文”查看
分享、点赞、在看,给个三连击呗!