查看原文
其他

【强基固本】VGG网络的Pytorch官方实现过程解读

“强基固本,行稳致远”,科学研究离不开理论基础,人工智能学科更是需要数学、物理、神经科学等基础学科提供有力支撑,为了紧扣时代脉搏,我们推出“强基固本”专栏,讲解AI领域的基础知识,为你的科研学习提供助力,夯实理论基础,提升原始创新能力,敬请关注。

来源:知乎—GShang

地址:https://zhuanlan.zhihu.com/p/373369598

在Pytorch中,已经实现了一部分经典的网络模型,这其中就包括VGG。


01

VGG的代码在哪里?
你可以在以下路径中发现该文件:
D:\Python\Anaconda3\envs\torch\lib\site-packages\torchvision\models\vgg.py

envs 以前的路径由你安装的路径决定。

调用时,如下:
import torchvision.models as modelsvgg16 = models.vgg16(pretrained=pretrained) # 带预训练权重的VGG16
你也可以将鼠标放在 vgg16 文字上方,按住 Ctrl 的同时,点击它,跳转到该文件中。


02

完整代码
该文件已经被我注释过,完整代码如下:
import torchimport torch.nn as nnfrom .utils import load_state_dict_from_url
# ------------------------------------------------------------------------------# 暴露接口__all__ = [ 'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19_bn', 'vgg19',]
# ------------------------------------------------------------------------------# 预训练权重下载地址model_urls = { 'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth', 'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth', 'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth', 'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth', 'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth', 'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth', 'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth', 'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth',}
# ------------------------------------------------------------------------------
class VGG(nn.Module): ''' VGG通用网络模型 输入features为网络的特征提取部分网络层列表 分类数为 1000 ''' def __init__(self, features, num_classes=1000, init_weights=True): super(VGG, self).__init__()
# 特征提取部分 self.features = features
# 自适应平均池化,特征图池化到 7×7 大小 self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
# 分类部分 self.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), # 512*7*7 --> 4096 nn.ReLU(True), nn.Dropout(), nn.Linear(4096, 4096), # 4096 --> 4096 nn.ReLU(True), nn.Dropout(), nn.Linear(4096, num_classes), # 4096 --> 1000 )
# 权重初始化 if init_weights: self._initialize_weights()
def forward(self, x):
# 特征提取 x = self.features(x) # 自适应平均池化 x = self.avgpool(x) # 特征图展平成向量 x = torch.flatten(x, 1) # 分类器分类输出 x = self.classifier(x) return x
def _initialize_weights(self): ''' 权重初始化 ''' for m in self.modules(): if isinstance(m, nn.Conv2d): # 卷积层使用 kaimming 初始化 nn.init.kaiming_normal_( m.weight, mode='fan_out', nonlinearity='relu') # 偏置初始化为0 if m.bias is not None: nn.init.constant_(m.bias, 0) # 批归一化层权重初始化为1 elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # 全连接层权重初始化 elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0)

# ------------------------------------------------------------------------------def make_layers(cfg, batch_norm=False): ''' 根据配置表,返回模型层列表 ''' layers = [] # 层列表初始化
in_channels = 3 # 输入3通道图像
# 遍历配置列表 for v in cfg: if v == 'M': # 添加池化层 layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: # 添加卷积层
# 3×3 卷积 conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
# 卷积-->批归一化(可选)--> ReLU激活 if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)]
# 通道数方面,下一层输入即为本层输出 in_channels = v
# 以sequencial类型返回模型层列表 return nn.Sequential(*layers)

# 网络参数配置表'''数字代表通道数,如 64 表示输出 64 通道特征图,对应于论文中的 Conv3-64;M 代表最大池化操作,对应于论文中的 maxpool A-LRN使用了局部归一化响应,C网络存在1×1卷积,这两个网络比较特殊,所以排除在配置表中'''cfgs = { 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],}
# ------------------------------------------------------------------------------
def _vgg(arch, cfg, batch_norm, pretrained, progress, **kwargs): ''' 通用网络构造器,主要实现网络模型生成,以及预训练权重的导入 ''' if pretrained: kwargs['init_weights'] = False model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs)
if pretrained: state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) model.load_state_dict(state_dict) return model
# ------------------------------------------------------------------------------
def vgg11(pretrained=False, progress=True, **kwargs): r"""VGG 11-layer model (configuration "A") from `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg11', 'A', False, pretrained, progress, **kwargs)

def vgg11_bn(pretrained=False, progress=True, **kwargs): r"""VGG 11-layer model (configuration "A") with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg11_bn', 'A', True, pretrained, progress, **kwargs)

def vgg13(pretrained=False, progress=True, **kwargs): r"""VGG 13-layer model (configuration "B") `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg13', 'B', False, pretrained, progress, **kwargs)

def vgg13_bn(pretrained=False, progress=True, **kwargs): r"""VGG 13-layer model (configuration "B") with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg13_bn', 'B', True, pretrained, progress, **kwargs)

def vgg16(pretrained=False, progress=True, **kwargs): r"""VGG 16-layer model (configuration "D") `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg16', 'D', False, pretrained, progress, **kwargs)

def vgg16_bn(pretrained=False, progress=True, **kwargs): r"""VGG 16-layer model (configuration "D") with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg16_bn', 'D', True, pretrained, progress, **kwargs)

def vgg19(pretrained=False, progress=True, **kwargs): r"""VGG 19-layer model (configuration "E") `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg19', 'E', False, pretrained, progress, **kwargs)

def vgg19_bn(pretrained=False, progress=True, **kwargs): r"""VGG 19-layer model (configuration 'E') with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """    return _vgg('vgg19_bn', 'E', True, pretrained, progress, **kwargs)

03

实现原理
下面,简单分析一下它是如何实现VGG论文中的VGG11到VGG19这几种网络的。

整体框图

首先看下面这张图,整个代码的逻辑关系如下:
原文回顾
根据论文中各个网络结构的参数,可发现,A-LRN和C网络比较特殊,一个使用了局部归一化响应,另一个使用了 1×1 卷积,剩下的网络结构的组件都是通用的,如卷积、池化、全连接等。因此pytorch官方选择将 A、B、D、E作为 VGG 调用的全部网络。
实现过程分析
根据网络结构和参数设置,构造 cfgs 字典,存放这些结构参数:
cfgs = { 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],}
其中,数字代表卷积层输出特征图通道数,M 代表最大池化层。
根据 cfgs 的配置参数,使用 make_layers 函数,来自动创建 Sequential 网络层列表。
def make_layers(cfg, batch_norm=False): ''' 根据配置表,返回模型层列表 ''' layers = [] # 层列表初始化
in_channels = 3 # 输入3通道图像
# 遍历配置列表 for v in cfg: if v == 'M': # 添加池化层 layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: # 添加卷积层
# 3×3 卷积 conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
# 卷积-->批归一化(可选)--> ReLU激活 if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)]
# 通道数方面,下一层输入即为本层输出 in_channels = v
# 以sequencial类型返回模型层列表    return nn.Sequential(*layers)
这里卷积层全部为 3×3 的卷积核,然后批归一化为可选项。
make_layers 返回的 Sequential 对应的就是网络的特征提取部分的网络结构,因此,进一步地在 VGG这个类中,来构造一个通用的VGG网络模型。
class VGG(nn.Module): ''' VGG通用网络模型 输入features为网络的特征提取部分网络层列表 分类数为 1000 ''' def __init__(self, features, num_classes=1000, init_weights=True): super(VGG, self).__init__()
# 特征提取部分 self.features = features
# 自适应平均池化,特征图池化到 7×7 大小 self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
# 分类部分 self.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), # 512*7*7 --> 4096 nn.ReLU(True), nn.Dropout(), nn.Linear(4096, 4096), # 4096 --> 4096 nn.ReLU(True), nn.Dropout(), nn.Linear(4096, num_classes), # 4096 --> 1000 )
# 权重初始化 if init_weights: self._initialize_weights()
def forward(self, x):
# 特征提取 x = self.features(x) # 自适应平均池化 x = self.avgpool(x) # 特征图展平成向量 x = torch.flatten(x, 1) # 分类器分类输出 x = self.classifier(x) return x
def _initialize_weights(self): ''' 权重初始化 ''' for m in self.modules(): if isinstance(m, nn.Conv2d): # 卷积层使用 kaimming 初始化 nn.init.kaiming_normal_( m.weight, mode='fan_out', nonlinearity='relu') # 偏置初始化为0 if m.bias is not None: nn.init.constant_(m.bias, 0) # 批归一化层权重初始化为1 elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # 全连接层权重初始化 elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01)                nn.init.constant_(m.bias, 0)
这里 Pytorch 官方做了一个小改动,那就是在特征提取部分完成后,使用一个自适应池化层将特征图的宽和高池化到 7×7 大小,这样做的目的是让下一步的 flatten 操作得到的是一个固定长度的向量,从而让网络能够接受任意尺寸的图像输入(原文中的输入图像尺寸为224×224)。展平后的向量输入到由三个全连接层构成的分类器中进行分类,这里 Pytorch 官方加入了两次 dropout 操作。此外,权重的初始化也进行了定义。
为了实现VGG11到VGG19的这几种网络,设计了一个 _vgg 函数,来自动生成网络模型,以及预训练权重的导入。
def _vgg(arch, cfg, batch_norm, pretrained, progress, **kwargs): ''' 通用网络构造器,主要实现网络模型生成,以及预训练权重的导入 ''' if pretrained: kwargs['init_weights'] = False model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs)
if pretrained: state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) model.load_state_dict(state_dict)    return model
预训练权重的下载地址定义在了 model_urls 里,如果你的网络不是很好,那么在调用时,会下载的很慢。假如你已经下载了对应的权重文件,那么也可以改写这个路径,以免重新下载。
model_urls = { 'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth', 'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth', 'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth', 'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth', 'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth', 'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth', 'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth', 'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth',}
最后,为每一种网络分别写了对应的函数,来实现网络的生成,例如vgg16网络,不带BN层和带BN层的两种:
def vgg16(pretrained=False, progress=True, **kwargs): r"""VGG 16-layer model (configuration "D") `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg16', 'D', False, pretrained, progress, **kwargs)

def vgg16_bn(pretrained=False, progress=True, **kwargs): r"""VGG 16-layer model (configuration "D") with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """    return _vgg('vgg16_bn', 'D', True, pretrained, progress, **kwargs)

04

心得
使用 nn.Sequential 能够让网络结构自定义更方便快捷,但仅限于这种具有线性堆叠结构的网络
通过设置网络结构参数表,来定义一个网络的骨架,是很好的建模范式,值得借鉴
学会发现网络结构之间的相似性,然后提炼通用的构造函数,这样可以大大节省开发时间,尤其是在需要设计大量的对照网络时,这种优势更明显。

本文目的在于学术交流,并不代表本公众号赞同其观点或对其内容真实性负责,版权归原作者所有,如有侵权请告知删除。


“强基固本”历史文章


更多强基固本专栏文章,

请点击文章底部“阅读原文”查看



分享、点赞、在看,给个三连击呗!

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存