【综述专栏】近十年的VI-SLAM算法综述与发展
在科学研究中,从方法论上来讲,都应“先见森林,再见树木”。当前,人工智能学术研究方兴未艾,技术迅猛发展,可谓万木争荣,日新月异。对于AI从业者来说,在广袤的知识森林中,系统梳理脉络,才能更好地把握趋势。为此,我们精选国内外优秀的综述文章,开辟“综述专栏”,敬请关注。
地址:https://blog.csdn.net/m0_37874102/article/details/114262115
01
图2 紧耦合和松耦合的示意图
02
图8 ORB-SLAM3系统框架
03
图9 SLAM 中不同滤波方法的分类
图10 MSCKF、EKF-SLAM 的示意图
图11 ROVIO 框架的流程图
图12 openvins算法流程示意图
04
05
[1] Mourikis A I, Roumeliotis S I. A multi-state constraint Kalman filter for vision-aided inertial navigation[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2007: 3565-3572.
[2] Geneva P , Eckenhoff K , Lee W , et al. OpenVINS: A Research Platform for Visual-Inertial Estimation[C]// Proc. of the IEEE International Conference on Robotics and Automation. IEEE, 2020.
[3] Bloesch M, Burri M, Omari S, et al. Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback[J]. International Journal of Robotics Research, 2017,36(10): 1053-1072.
[4] Faessler M, Fontana F, Forster C, et al. Autonomous, visionbased flight and live dense 3D mapping with a quadrotor microaerial vehicle[J]. Journal of Field Robotics, 2016, 33(4): 431-450.
[5] Leutenegger S, Lynen S, Bosse M, et al. Keyframe-based visual-inertial odometry using nonlinear optimization[J]. International Journal of Robotics Research, 2015, 34(3): 314-334.
[6] Qin T, Li P L, Shen S J. VINS-mono: A robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020.
[7] Liu H M, Chen M Y, Zhang G, et al. ICE-BA: Incremental,consistent and efficient bundle adjustment for visual-inertial SLAM[C]//31 st IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2018: 1974-1982
[8] Mur-Artal R, Tardós J D. Visual-inertial monocular SLAM with map reuse[J]. IEEE Robotics and Automation Letters, 2017,2(2): 796-803.
[9] Forster C, Carlone L, Dellaert F, et al. On-manifold preinte-gration for real-time visual-inertial odometry[J]. IEEE Transactions on Robotics, 2017, 33(1): 1-21.
[10]Campos C , Elvira R , Juan J. Gómez Rodríguez, et al. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM[J]. 2020.
[11] 施俊屹.移动机器人视觉惯性 SLAM 研究进展
本文目的在于学术交流,并不代表本公众号赞同其观点或对其内容真实性负责,版权归原作者所有,如有侵权请告知删除。
“综述专栏”历史文章
模型量化概述
拯救深度学习:标注数据不足下的深度学习方法
给模型加入先验知识
NLP的“第四范式”之prompt learning总结
纯干货 | 无监督核心聚类算法
MLP is Maybe Your Need
SOM(自组织映射神经网络)——理论篇
GAN学习指南:从原理入门到制作生成Demo
深度学习模型大小与模型推理速度的探讨
一文了解推荐系统中的图神经网络
自编码器的最佳特征:最大化互信息
系统了解Encoder-Decoder 和 Seq2Seq及其关键技术
GNN解耦表征论文汇总
最简单的self-supervised方法
Transformer结构理解及一些细节!
更多综述专栏文章,
请点击文章底部“阅读原文”查看
分享、点赞、在看,给个三连击呗!