sensors installed on roads, subway and bus system transaction records, traffic surveillance videos, smartphone GPS,...难点:大规模高维数据;多种动态(包括交通事故等紧急情况)传统线性时间序列模型(如ARIMA等)无法有效处理时空预测问题,故引入了机器学习方法(ML)和深度学习技术来改性预测性能,如文献[1]将城市建模为网格(grid)后再用CNN来处理。但基于CNN的方法不是处理具有图形式的时空预测问题的最优方法。GNN优点:能捕获时空预测问题中利用非欧图结构展示的空间关联。现有的交通预测领域综述性文件[5-19][2]均未能像本文一样从图神经网络角度进行综述。
Graph Construction:G=(V,E,A),where V is the set of vertices or nodes, E is the set of edges between the nodes, and A is the adjacency matrix Element aij of A represents the “edge weight” between nodes i and j. , 其中 为外部特征(例如天气,节假日,事件等)
1. Geospatial data to images: A deep-learning framework for traffic forecasting2. [5] X. Shi and D.-Y. Yeung, “Machine learning for spatiotemporal sequence forecasting: A survey,” arXiv preprint arXiv:1808.06865, 2018. [6] D. Pavlyuk, “Feature selection and extraction in spatiotemporal traffic forecasting: a systematic literature review,” European Transport Research Review, vol. 11, no. 1, p. 6, 2019. [7] X. Yin, G. Wu, J. Wei, Y. Shen, H. Qi, and B. Yin, “A comprehensive survey on traffic prediction,” arXiv preprint arXiv:2004.08555, 2020. [8] M. Luca, G. Barlacchi, B. Lepri, and L. Pappalardo, “Deep learning for human mobility: a survey on data and models,” arXiv preprint arXiv:2012.02825, 2020. [9] X. Fan, C. Xiang, L. Gong, X. He, Y. Qu, S. Amirgholipour, Y. Xi, P. Nanda, and X. He, “Deep learning for intelligent traffic sensing and prediction: recent advances and future challenges,” CCF Transactions on Pervasive Computing and Interaction, pp. 1–21, 2020. [10] A. Boukerche and J. Wang, “Machine learning-based traffic prediction models for intelligent transportation systems,” Computer Networks, vol. 181, p. 107530, 2020. [11] E. L. Manibardo, I. Lana, and J. Del Ser, “Deep learning for ˜ road traffic forecasting: Does it make a difference?” arXiv preprint arXiv:2012.02260, 2020. [12] J. Ye, J. Zhao, K. Ye, and C. Xu, “How to build a graph-based deep learning architecture in traffic domain: A survey,” arXiv preprint arXiv:2005.11691, 2020. [13] K. Lee, M. Eo, E. Jung, Y. Yoon, and W. Rhee, “Short-term traffic prediction with deep neural networks: A survey,” arXiv preprint arXiv:2009.00712, 2020. [14] P. Xie, T. Li, J. Liu, S. Du, X. Yang, and J. Zhang, “Urban flow prediction from spatiotemporal data using machine learning: A survey,” Information Fusion, vol. 59, pp. 1–12, 2020. [15] S. George and A. K. Santra, “Traffic prediction using multifaceted techniques: A survey,” Wireless Personal Communications, vol. 115, no. 2, pp. 1047–1106, 2020. [16] A. K. Haghighat, V. Ravichandra-Mouli, P. Chakraborty, Y. Esfandiari, S. Arabi, and A. Sharma, “Applications of deep learning in intelligent transportation systems,” Journal of Big Data Analytics in Transportation, vol. 2, no. 2, pp. 115–145, 2020. [17] A. Boukerche, Y. Tao, and P. Sun, “Artificial intelligence-based vehicular traffic flow prediction methods for supporting intelligent transportation systems,” Computer Networks, vol. 182, p. 107484, 2020. [18] D. A. Tedjopurnomo, Z. Bao, B. Zheng, F. Choudhury, and A. Qin, “A survey on modern deep neural network for traffic prediction: Trends, methods and challenges,” IEEE Transactions on Knowledge and Data Engineering, 2020. [19] V. Varghese, M. Chikaraishi, and J. Urata, “Deep learning in transport studies: A meta-analysis on the prediction accuracy,” Journal of Big Data Analytics in Transportation, pp. 1–22, 2020.