【综述专栏】基于深度学习的计算机视觉研究新进展
在科学研究中,从方法论上来讲,都应“先见森林,再见树木”。当前,人工智能学术研究方兴未艾,技术迅猛发展,可谓万木争荣,日新月异。对于AI从业者来说,在广袤的知识森林中,系统梳理脉络,才能更好地把握趋势。为此,我们精选国内外优秀的综述文章,开辟“综述专栏”,敬请关注。
来源:http://sjcj.nuaa.edu.cn/ch/reader/download_pdf_file.aspx?journal_id=sjcjycl&file_name=3618E016C89268EC90BDFA962A474893134547BFFDDFC5C9B639DF13F6AB8D7339A217348B77FBE03F711B15F8B21BE048578E2ECD2A7218&open_type=self&file_no=202202001
编辑:人工智能前沿讲习
01
02
03
04
05
1. 卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理, 2016, 31(1): 1-17. [百度学术]
LU Hongtao, ZHANG Qinchuan. Applications of deep convolutional neural network in computer vision[J]. Journal of Data Acquisition and Processing, 2016, 31(1): 1-17. [百度学术]
2. DECHTER R. Learning while searching in constraint-satisfaction problems[C]//AIAA-86 Proceedings. [S.l.]: AIAA, 1986: 179-183. [百度学术]
3. AIZENBERG I, AIZENBERG N, BUTAKOV C, et al. Image recognition on the neural network based on multi-valued neurons[C]//Proceedings of the 15th International Conference on Pattern Recognition. [S.l.]: IEEE, 2000: 989-992. [百度学术]
4.SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Networks, 2015, 61: 85-117. [百度学术]
5.LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. [百度学术]
6.DENG L, YU D. Deep learning: Methods and applications[J]. Foundations and Trends in Signal Processing, 2014, 7(3/4): 197-387. [百度学术]
7.BENGIO Y. Learning deep architectures for AI[M]. Boston: Now Publishers Inc. 2009. [百度学术]
8.HINTON G E. What kind of graphical model is the brain?[C]//Proceedings of the 19th International Joint Conference on Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005: 1765-1775. [百度学术]
9.HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. [百度学术]
10.HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. [百度学术]
11.DAHL G E, YU D, DENG L, et al. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J]. IEEE Transactions on Audio, Speech, and language Processing, 2011, 20(1): 30-42. [百度学术]
12. HINTON G, DENG L, YU D, et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97. [百度学术]
13. KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25: 1097-1105. [百度学术]
14. LECUN Y, BOSER B, DENKER J, et al. Handwritten digit recognition with a back-propagation network[J]. Advances in Neural Information Processing Systems, 1989, 2: 396-404. [百度学术]
15. LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86: 2278-2324. [百度学术]
16. LOWE D G.Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. [百度学术]
17. DALAI N,TRIGGS B.Histograms of oriented gradients for human detection[C]//Proceedings of Computer Vision and Pattern Recognition(CVPR). San Diego, USA: IEEE,2005, 1: 886-893. [百度学术]
18. BAY H, TUYTELAARS T, VAN GOOL L . SURF: Speeded up robust features[C]//Proceedings of European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2006: 404-417. [百度学术]
19. DENG J, DONG W, SOCHER R, et al. Imagenet: A large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2009: 248-255. [百度学术]
20. OJALA T, PIETIKAINEN M, HARWOOD D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions[C]//Proceedings of the 12th International Conference on Pattern Recognition. [S.l.]: IEEE, 1994, 1: 582-585. [百度学术]
21. OJALA T, PIETIKÄINEN M, HARWOOD D. A comparative study of texture measures with classification based on featured distributions[J]. Pattern Recognition, 1996, 29(1): 51-59. [百度学术]
22. ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2014: 818-833. [百度学术]
23. SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2015: 1-9. [百度学术]
24. LIN M, CHEN Q, YAN S. Network in network[EB/OL].(2013-03-08)[2022-01-20]. https://arxiv.org/abs/1312.4400. [百度学术]
25. IOFFE S,SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[EB/OL]. (2015-03-13)[2022-01-20]. http://arxiv.org/asb/1502.03167. [百度学术]
26. SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2016: 2818-2826. [百度学术]
27. SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. [S.l.]: AAAI, 2017. [百度学术]
28. SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2022-01-20]. https://arxiv.org/abs/1409.1556. [百度学术]
29. HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2016: 770-778. [百度学术]
30. HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2017: 4700-4708. [百度学术]
31. XIE S, GIRSHICK R, DOLLáR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2017: 1492-1500. [百度学术]
32. CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2017: 1251-1258. [百度学术]
33. KUZNETSOVA A, ROM H, ALLDRIN N, et al. The open images dataset v4: Unified image classification, object detection, and visual relationship detection at scale[J]. International Journal of Computer Vision, 2018. DOI: 10.1007/s11263-020-01316-z. [百度学术]
34. SUN C, SHRIVASTAVA A, SINGH S, et al. Revisiting unreasonable effectiveness of data in deep learning era[C]//Proceedings of the IEEE International Conference on Computer Vision. [S.l.]: IEEE, 2017: 843-852. [百度学术]
35. CARREIRA J, NOLAND E, BANKI-HORVATH A, et al. A short note about kinetics-600[EB/OL]. (2018-08-03)[2022-01-20]. https://arxiv.org/abs/1808.01340v1. [百度学术]
36. SMAIRA L, CARREIRA J, NOLAND E, et al. A short note on the kinetics-700-2020 human action dataset[EB/OL]. (2020-10-21)[2022-01-20]. https://arxiv.org/abs/2010.10864. [百度学术]
37. KINGMA D P, WELLING M. Auto-encoding variational bayes[EB/OL]. (2014-05-01)[2022-01-20]. https://arxiv.org/abs/1312.6114. [百度学术]
38. GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[J]. Advances in Neural Information Processing Systems, 2014, 27: 2672-2680. [百度学术]
39. YU X, ZHANG X, CAO Y, et al. VAEGAN: A collaborative filtering framework based on adversarial variational autoencoders[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. [S.l.]: ACM, 2019: 4206-4212. [百度学术]
40. IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[EB/OL]. (2016-11-04)[2022-01-20]. https://arxiv.org/abs/1602.07360. [百度学术]
41. HOWARD A G, ZHU M, CHEN B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17)[2022-01-20]. https://arxiv.org/abs/1704.04861. [百度学术]
42. ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2018: 6848-6856. [百度学术]
43. SANDLER M, HOWARD A, ZHU M, et al. MobileNet v2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on computer vision and Pattern Recognition. [S.l.]: IEEE, 2018: 4510-4520. [百度学术]
44. MA N, ZHANG X, ZHENG H T, et al. ShuffleNet v2: Practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV). [S.l.]: Springer, 2018: 116-131. [百度学术]
45. HAN K, WANG Y, TIAN Q, et al. GhostNet: More features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2020: 1580-1589. [百度学术]
46. LI H, KADAV A, DURDANOVIC I, et al. Pruning filters for efficient convnets[EB/OL]. (2017-03-10)[2022-01-20]. https://arxiv.org/abs/1608.08710. [百度学术]
47. HITCHCOCK F L. The expression of a tensor or a polyadic as a sum of products[J]. Journal of Mathematics and Physics, 1927, 6(1/2/3/4): 164-189. [百度学术]
48. TUCKER L R. Some mathematical notes on three-mode factor analysis[J]. Psychometrika, 1966, 31(3): 279-311. [百度学术]
49. HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. (2015-03-09)[2022-01-20]. https://arxiv.org/abs/1503.02531. [百度学术]
50. GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2014: 580-587. [百度学术]
51. GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. [S.l.]: IEEE, 2015: 1440-1448. [百度学术]
52. REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [百度学术]
53. DAI J, LI Y, HE K, et al. R-FCN: Object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. [S.l.]: ACM, 2016: 379-387. [百度学术]
54. HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37: 1904-1916. [百度学术]
55. LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]//Proceedings of European Conference on Computer Vision. Cham: Springer, 2016: 21-37. [百度学术]
56. LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2017: 2117-2125. [百度学术]
57. REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2016: 779-788. [百度学术]
58. REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2017: 7263-7271. [百度学术]
59. REDMON J, FARHADI A. YOLOV3: An incremental improvement[EB/OL]. (2018-04-08)[2022-01-20]. https://arxiv.org/abs/1804.02767. [百度学术]
60. LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. [S.l.]: IEEE, 2017: 2980-2988. [百度学术]
61. TIAN Z, SHEN C, CHEN H, et al. FCOS: Fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. [S.l.]: IEEE, 2019: 9627-9636. [百度学术]
62. ZHANG H, WANG Y, DAYOUB F, et al. VarifocalNet: An iou-aware dense object detector[EB/OL]. (2021-05-04)[2022-01-20]. https://arxiv.org/abs/2008.13367. [百度学术]
63. RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. [百度学术]
64. LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2015: 3431-3440. [百度学术]
65. HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. [S.l.]: IEEE, 2017: 2961-2969. [百度学术]
66. CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL]. (2016-06-07)[2022-01-20]. https://arxiv.org/abs/1412.7062. [百度学术]
67. BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [百度学术]
68. BROSTOW G J, FAUQUEUR J, CIPOLLA R. Semantic object classes in video: A high-definition ground truth database[J]. Pattern Recognition Letters, 2009, 30(2): 88-97. [百度学术]
69. SONG S, LICHTENBERG S P, XIAO J. Sun RGB-D: A RGB-D scene understanding benchmark suite[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2015: 567-576. [百度学术]
70. ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2017: 2881-2890. [百度学术]
71. CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848. [百度学术]
72. CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. (2017-12-05)[2022-01-20]. https://arxiv.org/abs/1706.05587. [百度学术]
73. CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer vision (ECCV). [S.l.]: Springer, 2018: 801-818. [百度学术]
74. LI H, XIONG P, FAN H, et al. DFANet: Deep feature aggregation for real-time semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2019: 9522-9531. [百度学术]
75. CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2016: 3213-3223. [百度学术]
76. JIANG W, XIE Z, LI Y, et al. LRNNet: A light-weighted network with efficient reduced non-local operation for real-time semantic segmentation[C]//Proceedings of 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). [S.l.]: IEEE, 2020: 1-6. [百度学术]
77. PAPANDREOU G, CHEN L C, MURPHY K P, et al. Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision. [S.l.]: IEEE, 2015: 1742-1750. [百度学术]
78. OH S J, BENENSON R, KHOREVA A, et al. Exploiting saliency for object segmentation from image level labels[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). [S.l.]: IEEE, 2017: 5038-5047. [百度学术]
79. AHN J, KWAK S. Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2018: 4981-4990. [百度学术]
80. LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]//Proceedings of European Conference on Computer Vision. Cham: Springer, 2014: 740-755. [百度学术]
81. EVERINGHAM M, ESLAMI S M A, VAN GOOL L, et al. The pascal visual object classes challenge: A retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98-136. [百度学术]
82. DI FRANCIA G T. Super-gain antennas and optical resolving power[J]. IL Nuovo Cimento (1943—1954), 1952, 9(3): 426-438. [百度学术]
83. HARRIS J L. Diffraction and resolving power[J]. JOSA, 1964, 54(7): 931-936. [百度学术]
84. GOODMAN J W. On the origin of peritoneal fluid cells[J]. Blood, 1964, 23(1): 18-26. [百度学术]
85. TSAI R Y, HUANG T S. Multiframe image restoration and registration[J]. Advance Computer Visual and Image Processing, 1984, 1: 317-339. [百度学术]
86. GAO X, ZHANG K, TAO D, et al. Image super-resolution with sparse neighbor embedding[J]. IEEE Transactions on Image Processing, 2012, 21(7): 3194-3205. [百度学术]
87. YANG J, WRIGHT J, HUANG T, et al. Image super-resolution as sparse representation of raw image patches[C]//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2008: 1-8. [百度学术]
88. YANG J, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873. [百度学术]
89. 苏衡, 周杰, 张志浩. 超分辨率图像重建方法综述[J]. 自动化学报, 2013, 39(8): 1202-1213. [百度学术]
SU Heng, ZHOU Jie, ZHANG Zhihao. Survey of super-resolution image reconstruction methods[J]. Acta Automatica Sinica, 2013, 39(8): 1202-1213. [百度学术]
90. BASHIR S M A, WANG Y, KHAN M, et al. A comprehensive review of deep learning-based single image super-resolution[EB/OL]. (2021-07-13)[2022-01-20]. https://arxiv.org/abs/2102.09351. [百度学术]
91. DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38: 295-307. [百度学术]
92. DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//Proceedings of European Conference on Computer Vision. Cham: Springer, 2016: 391-407. [百度学术]
93. SHI W, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2016: 1874-1883. [百度学术]
94. KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2016: 1646-1654. [百度学术]
95. AHN N, KANG B, SOHN K A. Fast, accurate, and lightweight super-resolution with cascading residual network[C]//Proceedings of the European Conference on Computer Vision (ECCV). [S.l.]: Springer,2018: 252-268. [百度学术]
96. WANG X, CHAN K C K, YU K, et al. EDVR: Video restoration with enhanced deformable convolutional networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. [S.l.]: IEEE, 2019. [百度学术]
97. TIAN Y, ZHANG Y, FU Y, et al. TDAN: Temporally-deformable alignment network for video super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2020: 3360-3369. [百度学术]
98. LI S, HE F, DU B, et al. Fast spatio-temporal residual network for video super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2019: 10522-10531. [百度学术]
99. LIU C, CHEN L C, SCHROFF F, et al. Auto-DeepLab: Hierarchical neural architecture search for semantic image segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2019: 82-92. [百度学术]
100. GHIASI G, LIN T Y, LE Q V. NAS-FPN: Learning scalable feature Pyramid architecture for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2019: 7036-7045. [百度学术]
101. ELSKEN T, METZEN J H, HUTTER F. Neural architecture search: A survey[J]. The Journal of Machine Learning Research, 2019, 20(1): 1997-2017. [百度学术]
102. BAKER B, GUPTA O, NAIK N, et al. Designing neural network architectures using reinforcement learning[EB/OL]. (2017-05-22)[2022-01-20]. https://arxiv.org/abs/1611.02167. [百度学术]
103. ZOPH B, LE Q V. Neural architecture search with reinforcement learning[EB/OL]. (2017-11-13)[2022-01-20]. https://arxiv.org/abs/1611.01578. [百度学术]
104. LIU H, SIMONYAN K, YANG Y. DARTS: Differentiable architecture search[EB/OL]. (2019-04-23)[2022-01-20]. https://arxiv.org/abs/1806.09055v1. [百度学术]
105. ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning transferable architectures for scalable image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2018: 8697-8710. [百度学术]
106. LIU C, ZOPH B, NEUMANN M, et al. Progressive neural architecture search[C]//Proceedings of the European Conference on Computer Vision (ECCV). [S.l.]: Springer, 2018: 19-34. [百度学术]
107. PHAM H, GUAN M, ZOPH B, et al. Efficient neural architecture search via parameters sharing[C]//Proceedings of International Conference on Machine Learning. [S.l.]: PMLR, 2018: 4095-4104. [百度学术]
108. KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images[EB/OL]. [2022-01-20]. https://doi.org/10.1.1.222.9220. [百度学术]
109. GOLDBERGER A L, AMARAL L A N, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): e215-e220. [百度学术]
110. MERITY S, XIONG C, BRADBURY J, et al. Pointer sentinel mixture models[EB/OL]. (2016-09-26)[2022-01-20]. https://arxiv.org/abs/1609.07843. [百度学术]
111. CHEN X, XIE L, WU J, et al. Progressive differentiable architecture search: Bridging the depth gap between search and evaluation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. [S.l.]: IEEE, 2019: 1294-1303. [百度学术]
112. CAI H, ZHU L, HAN S. ProxylessNAS: Direct neural architecture search on target task and hardware[EB/OL]. (2019-02-23)[2022-01-20]. https://arxiv.org/abs/1812.00332. [百度学术]
113. LIANG H, ZHANG S, SUN J, et al. DARTS+: Improved differentiable architecture search with early stopping[EB/OL]. (2020-10-20)[2022-01-20]. https://arxiv.org/abs/1909.06035v1. [百度学术]
114. XIE S, ZHENG H, LIU C, et al. SNAS: Stochastic neural architecture search[EB/OL]. (2020-04-01)[2022-01-20]. https://arxiv.org/abs/1812.09926. [百度学术]
115. XU Y, XIE L, ZHANG X, et al. PC-DARTS: Partial channel connections for memory-efficient architecture search[EB/OL]. (2020-04-07)[2022-01-20]. https://arxiv.org/abs/1907.05737v1. [百度学术]
本文目的在于学术交流,并不代表本公众号赞同其观点或对其内容真实性负责,版权归原作者所有,如有侵权请告知删除。
“综述专栏”历史文章
大规模神经网络最新文献综述:训练高效DNN、节省内存使用、优化器设计
十年回顾——CV的未来:ConvNeXt or Transformer?
简述 Human Pose with Deep-learning
图像异常检测研究现状综述
NER的简单综述
深入理解LightGBM
2022图神经网络5篇最新的研究综述:双曲/图分类/联邦/等变/异质性
深度神经网络 FPGA 设计进展、实现与展望
视觉-语言(VL)智能:任务、表征学习和大型模型
基于深度学习的SLAM综述:迈向空间机器智能时代
Michael Bronstein 最新几何深度学习综述:超越 WL 和原始消息传递的 GNN
从识别到推理——规则学习(Rule Learning)综述
公平机器学习:概念、分析与设计
知识蒸馏 | 最新2022研究综述
MICCAI-2021医学图像分割领域69篇文章速读概览(文末附总结)
更多综述专栏文章,
请点击文章底部“阅读原文”查看
分享、点赞、在看,给个三连击呗!