一起学习支持向量机(一):支持向量机的分类思想
前言
支持向量机是一种经典的机器学习算法,在小样本数据集的情况下有非常广的应用,我觉得,不懂支持向量机不算是入门机器学习
目录
1. 函数间隔和几何间隔
2. 支持向量机的分类思想
3. 总结
1. 函数间隔和几何间隔
为了能够更好的阐述支持向量机的分类思想,需要理解函数间隔和几何间隔的定义。
1. 点到超平面的距离
假设超平面方程:
点
由上式可得:
2. 函数间隔和几何间隔
对于给定的训练数据集T,正样本和负样本分别为+1和-1,我们对式(1.1)稍微进行了修改:
(1). 点到平面的距离不作规范化处理,得:
(2). 去掉绝对值符号,并乘以标记结果y0,得:
d2表达式就是函数间隔的定义,有两层含义:大小表示点P0到超平面的距离,正负表示点P0是否正确分类,若d<0,分类错误;反之,则分类正确。
因此,我们定义点到超平面的函数间隔为:
接着定义训练数据集T的函数间隔是所有样本点(xi,yi)的函数间隔的最小值,即:
其中,
但是,若成比例的增加超平面参数w和b,超平面没有改变,但是函数间隔却成比例的增加了,这是不符合理论的,因此,需要对函数间隔进行规范化,得:
(1.7)式就是几何间隔的定义,几何间隔的值是确定的。
2. 支持向量机的分类思想
1. 感知机和logistic回归的分类思想
感知机的损失函数为所有误分类点到超平面的距离之和:
无误分类点时,损失函数为0,满足模型分类条件的超平面有无数个,如下图:
初始超平面为l1,误分类点为红色框,最小化式(2.1)有无穷多个满足损失函数为0的超平面,如上图的l2~ln,然而,最佳分类超平面只有一个,即支持向量机所对应的超平面。
假设logistic回归的模型是
简单分析(2.2)式的分类思想:
(1). 当yi=1时,损失函数简化为:
若要使损失函数
图2.1
当
(2). 当yi=0时,损失函数简化为:
若要使损失函数
当
2. 支持向量机的分类思想
支持向量机结合了感知机和logistic回归分类思想,假设训练样本点(xi,yi)到超平面H的几何间隔为γ(γ>0),由上节定义可知,几何间隔是点到超平面最短的距离,如下图的红色直线:
用logisitic回归模型分析几何间隔:
因此,当γ越大时,损失函数越小,结果为正样本的概率也越大。
因此,感知机的分类思想是最大化点到超平面的几何间隔,这个问题可以表示为下面的约束最优化问题:
根据几何间隔和函数间隔的关系,得几何间隔的约束最优化问题:
函数间隔是样本点到超平面的最短距离,因此,令函数间隔为常数1,那么其他样本点到超平面的距离都大于1,且最大化
由(2.8)式和(2.9)式,解得最优解w*,b*,易知最优超平面到正负样本的几何间隔相等(请理解几何间隔的含义,然后仔细回想整个分类过程,就会得到这个结论)。
3. 总结
本文结合了感知机和logistic回归的分类思想来推导支持向量机的最优化问题,即最大间隔分离超平面。
参考
李航 《统计学习方法》
推荐阅读文章