查看原文
其他

解析几何的定义、发展与基本思想

解析几何的定义

坐标几何包括平面解析几何和立体解析几何两部分。平面解析几何通过平面直角坐标系,建立点与实数对之间的一一对应关系,以及曲线与方程之间的一一对应关系,运用代数方法研究几何问题,或用几何方法研究代数问题。



解析几何(英语:analytic geometry),又称为坐标几何(英语:coordinate geometry)或卡氏几何(英语:Cartesian geometry),早先被叫作笛卡儿几何,是一种借助于解析式进行图形研究的几何学分支。解析几何通常使用二维的平面直角坐标系研究直线、圆、圆锥曲线、摆线、星形线等各种一般平面曲线,使用三维的空间直角坐标系来研究平面、球等各种一般空间曲面,同时研究它们的方程,并定义一些图形的概念和参数。

现代解析几何的发展

17 世纪以来,由于航海、天文、力学、经济、军事、生产的发展,以及初等几何和初等代数的迅速发展,促进了坐标几何的建立,并被广泛应用于数学的各个分支。在坐标几何创立以前,几何与代数是彼此独立的两个分支。坐标几何的建立第一次真正实现了几何方法与代数方法的结合,使形与数统一起来,这是数学发展史上的一次重大突破。作为变量数学发展的第一个决定性步骤,坐标几何的建立对于微积分的诞生有着不可估量的作用。

解析几何的基本思想

笛卡尔的《几何学》共分三卷,第一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和“超立体”的作图,但它实际是代数问题,探讨方程的根的性质。从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种“普遍”的数学,把算术、代数、几何统一起来。他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。

为了实现上述的设想,笛卡尔从天文和地理的经纬制度出发,指出平面上的点和实数对  的对应关系。, 的不同数值可以确定平面上许多不同的点,这样就可以用代数的方法研究曲线的性质。这就是解析几何的基本思想。
具体地说,平面解析几何的基本思想有两个要点:第一,在平面建立坐标系,一点的坐标与一组有序的实数对相对应;第二,在平面上建立了坐标系后,平面上的一条曲线就可由带两个变数的一个代数方程来表示了。从这里可以看到,运用坐标法不仅可以把几何问题通过代数的方法解决,而且还把变量、函数以及数和形等重要概念密切联系了起来。
笛卡尔是如何产生并实现以上设想的呢?有一个传说说笛卡尔终生保持着在耶酥会学习读书期间养成的“晨思”的习惯,他在一次“晨思”时,看见一只苍蝇正在天花板上爬,他突然想到,如果知道了苍蝇与相邻两个墙壁的距离之间的关系,就能描述它的路线,这使他头脑中产生了关于解析几何的最初闪念。
事实上,解析几何的产生并不是偶然的。在笛卡尔写《几何学》以前,就有许多学者研究过用两条相交直线作为一种坐标系;也有人在研究天文、地理的时候,提出了一点位置可由两个“坐标”(经度和纬度)来确定。这些都对解析几何的创建产生了很大的影响。
另外,在数学史上,一般认为和笛卡尔同时代的法国业余数学家费尔马也是解析几何的创建者之一。
费尔马是一个业余从事数学研究的学者,对数论、解析几何、概率论三个方面都有重要贡献。他性情谦和,好静成癖,对自己所写的“书”无意发表。但从他的通信中知道,他早在笛卡尔发表《几何学》以前,就已写了关于解析几何的小文,已经有了解析几何的思想。只是直到 1679 年,费尔马死后,他的思想和著述才从给友人的通信中公开发表。
来源:遇见数学,本文仅用于学术分享,版权属于原作者。若有侵权,请联系微信号: 1306859767,Eternalhui, 删除或修改!

END


往期精彩回顾




袁隆平和他的杂交水稻
如果给四大名著换个名字
王元:一个数学家的荣辱观

让我知道你在看

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存