人教版八年级数学上册第14.2.2节《完全平方公式》微课视频|知识点|练习
电子课本
点击图片,查看大图
▼▼▼▼
微课视频
微课视频1:
更的多精彩视频,同学们可以选择观看哦!
微课视频2:
知识点讲解
同步练习
14.2乘法公式
状元笔记
【知识要点】
1.平方差公式
(a+b)(a-b)=a2-b2,两个数的和与这两个数的差的积,等于这两个数的平方差.
2.完全平方公式
(a±b)2=a2±2ab+b2,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.
【温馨提示】
1.不要将平方差公式和完全平方公式相混淆,注意它们项数和符号的不同.
2.完全平方公式中,中间项是左边两个数的和的2倍,注意系数的特点.
【方法技巧】
1.公式中的字母a、b可以是具体的数,也可以是单项式、多项式.只要符合公式的结构特征,就可以利用公式.
2.有些题目往往不能直接应用公式求解,但稍做适当的变形后就可以用乘法公式求解.如:位置变化,符号变化,数字变化,系数变化,项数变化等.
专题一 乘法公式
1.下列各式中运算错误的是( )
A.a2+b2=(a+b)2-2ab B.(a-b)2=(a+b)2-4ab
C.(a+b)(-a+b)=-a2+b2 D.(a+b)(-a-b)=-a2-b2
2.代数式(x+1)(x-1)(x2+1)的计算结果正确的是( )
A.x4-1 B.x4+1 C.(x-1)4 D.(x+1)4
3.计算:(2x+y)(2x-y)+(x+y)2-2(2x2-xy)(其中x=2,y=3).
专题二 乘法公式的几何背景
4.请你观察图形,依据图形面积之间的关系,不需要连其他的线,便可得到一个你非常熟悉的公式,这个公式是( )
A.(a+b)(a-b)=a2-b2 B.(a+b)2=a2+2ab+b2
C.(a-b)2=a2-2ab+b2 D.(a+b)2=a2+ab+b2
5.如图,你能根据面积关系得到的数学公式是( )
A.a2-b2=(a+b)(a-b) B.(a+b)2=a2+2ab+b2
C.(a-b)2=a2-2ab+b2 D.a(a+b)=a2+ab
6.我们在学习完全平方公式(a+b)2=a2+2ab+b2时,了解了一下它的几何背景,即通过图来说明上式成立.在习题中我们又遇到了题目“计算:(a+b+c)2”,你能将知识进行迁移,从几何背景说明(大致画出图形即可)并计算(a+b+c)2吗?
1
参考答案
参考答案:
1.D 解析:A中,由完全平方公式可得(a+b)2-2ab=a2+2ab+b2-2ab=a2+b2,故A正确;B中,由完全平方公式可得(a-b)2=a2-2ab+b2,(a+b)2-4ab=a2+2ab+b2-4ab=a2-2ab+b2,故B正确;C中,由平方差公式可得(a+b)(-a+b)=(a+b)(b-a)=b2-a2=-a2+b2,故C正确;D中,(a+b)(-a-b)=-(a+b)2=-a2-2ab-b2,故D错误.
2.A 解析:原式=(x2-1)(x2+1)=(x2)2-1=x4-1.
3.解:原式=4x2-y2+x2+2xy+y2-4x2+2xy=x2+4xy,
当x=2,y=3时,原式=22+4×2×3=4+24=28.
4.B 解析:这个图形的整体面积为(a+b)2;各部分的面积的和为a2+2ab+b2;所以得到公式(a+b)2=a2+2ab+b2.故选B.
5.C 解析:从图中可知:阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,∴(a-b)2=a2-2ab+b2,故选C.
6.解:(a+b+c)2的几何背景如图,整体的面积为:(a+b+c)2,用各部分的面积之和表示为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,所以(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.
●●● END ●●●
点亮【在看】