沪科版数学八年级上册11.2《图形在坐标系中的平移》微课视频|知识点|练习
电子课本
电子课本
知识点
1.点的平移:
在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).
要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.
2.图形的平移:
在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.
要点诠释:
(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.
(2)平移只改变图形的位置,图形的大小和形状不发生变化.
要点概述
根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起.
利用平面直角坐标系绘制区域内一些地点分布情况的过程:
(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向;
(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称
知识点
1.点的平移:
在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).
要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.
2.图形的平移:
在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.
要点诠释:
(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.
(2)平移只改变图形的位置,图形的大小和形状不发生变化.
要点概述
根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起.
利用平面直角坐标系绘制区域内一些地点分布情况的过程:
(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向;
(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称
知识点
1.点的平移:
在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).
要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.
2.图形的平移:
在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.
要点诠释:
(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.
(2)平移只改变图形的位置,图形的大小和形状不发生变化.
要点概述
根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起.
利用平面直角坐标系绘制区域内一些地点分布情况的过程:
(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向;
(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称
微课精讲
微课视频1:
微课视频2:
温馨提示:个别微课视频中所用教材有所不同,知识点是相同的,可借鉴观看。
微课精讲
微课视频1:
微课视频2:
温馨提示:个别微课视频中所用教材有所不同,知识点是相同的,可借鉴观看。
图文讲解
图文讲解
同步练习
基础过关作业
1.将点(-3,1)向右平移4个单位长度,再向上平移2个单位长度,可以得到对应点_______.
2.三角形ABC三个顶点的坐标分别是A(2,1),B(1,3),C(3,0),将三角形ABC向左平移3个单位长度,再向下平移1个单位长度,则平移后三个顶点的坐标为( )
A.(5,0),(4,2),(6,-1) B.(-1,0),(-2,2),(0,-1)
C.(-1,2),(-2,4),(0,1) D.(5,2),(4,4),(6,1)
3.在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向________(或向_______)平移______个单位长度.
4.如图,菱形ABCD,四个顶点分别是A(-2,1),B(1,-3),C(4,-1),D(1,1).将菱形沿x轴负方向平移3个单位长度,各个顶点的坐标变为多少?将它沿y轴正方向平移4个单位长度呢?分别画出平移后的图形.
5.如图,一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点,按如此规律走下去,当机器人走到A6点时,A6点的坐标是________.
参考答案:
1.(1,3)
2.B 点拨:将A、B、C三点的横坐标都减去3,纵坐标都减去1得(-1,0),(-2,2),(0,-1),故选B.
3.右;左;a
4.解:将菱形沿x轴负方向平移3个单位长度,各个顶点的坐标变为
(-5,-1),(-2,-3),(1,-1),(-2,1).
将它沿y轴正方向平移4个单位长度,各个顶点的坐标变为
(-2,3),(1,1),(4,3),(1,5).图略.
5.解:以点O为原点,正向方向为x轴正方向,正北方向为y轴正方向,建立如答图所示的平面直角坐标系,题中机器人运动的过程,实质上是坐标系中点的平移过程,即A1(3,0)→A2(3,6)→A3(-6,6)→A4(-6,-6)→A5(9,-6)→A6(9,12).
因此,在以O点为坐标原点,正北方向为y轴正方向的平面坐标系中,A6的坐标为(9,12).
同步练习
基础过关作业
1.将点(-3,1)向右平移4个单位长度,再向上平移2个单位长度,可以得到对应点_______.
2.三角形ABC三个顶点的坐标分别是A(2,1),B(1,3),C(3,0),将三角形ABC向左平移3个单位长度,再向下平移1个单位长度,则平移后三个顶点的坐标为( )
A.(5,0),(4,2),(6,-1) B.(-1,0),(-2,2),(0,-1)
C.(-1,2),(-2,4),(0,1) D.(5,2),(4,4),(6,1)
3.在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向________(或向_______)平移______个单位长度.
4.如图,菱形ABCD,四个顶点分别是A(-2,1),B(1,-3),C(4,-1),D(1,1).将菱形沿x轴负方向平移3个单位长度,各个顶点的坐标变为多少?将它沿y轴正方向平移4个单位长度呢?分别画出平移后的图形.
5.如图,一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点,按如此规律走下去,当机器人走到A6点时,A6点的坐标是________.
参考答案:
1.(1,3)
2.B 点拨:将A、B、C三点的横坐标都减去3,纵坐标都减去1得(-1,0),(-2,2),(0,-1),故选B.
3.右;左;a
4.解:将菱形沿x轴负方向平移3个单位长度,各个顶点的坐标变为
(-5,-1),(-2,-3),(1,-1),(-2,1).
将它沿y轴正方向平移4个单位长度,各个顶点的坐标变为
(-2,3),(1,1),(4,3),(1,5).图略.
5.解:以点O为原点,正向方向为x轴正方向,正北方向为y轴正方向,建立如答图所示的平面直角坐标系,题中机器人运动的过程,实质上是坐标系中点的平移过程,即A1(3,0)→A2(3,6)→A3(-6,6)→A4(-6,-6)→A5(9,-6)→A6(9,12).
因此,在以O点为坐标原点,正北方向为y轴正方向的平面坐标系中,A6的坐标为(9,12).
●●● END ●●●
怎么获取配套视频练习等资料?
扫描下方二维码
▼
免费领取方式
点击左下方【阅读原文】
即可领取全套资料
点击左下方【阅读原文】
即可领取全套资料