大数据实时链路备战——数据双流高保真压测
Tech导读
在企业的业务经营中,实时数据是营销、运维、决策的重要支撑,实时数据链路基本是所有大公司所拥有的,无论是否采用了中台模式,本文从如何建设实时数据双流、数据双流的建设标准,以及数据双流的压测备战三方面进行了详细的论述。
导读
在企业的业务经营中,实时数据是营销、运维、决策的重要支撑,实时数据链路基本是所有大公司所拥有的,无论是否采用了中台模式,本文从如何建设实时数据双流、数据双流的建设标准,以及数据双流的压测备战三方面进行了详细的论述。01 大数据双流建设
在今年的敏捷团队建设中,我通过Suite执行器实现了一键自动化单元测试。Juint除了Suite执行器还有哪些执行器呢?由此我的Runner探索之旅开始了!
1.1 数据双流
大数据时代,越来越多的业务依赖实时数据用于决策,比如促销调整,点击率预估、广告分佣等。为了保障业务的顺利开展,也为了保证整体大数据链路的高可用性,越来越多的0级系统建设双流,以保证日常及大促期间数据流的稳定性。建设核心数据链路双机房,双流双活。同时双流建设需要整条链路上的所有环节双机房部署,占用了双倍的物理资源;整个建设过程要协同上下游各环节(数据生产方、数仓加工方、中间处理节点、业务消费方),也会消耗大量的沟通建设成本。为了达到资源消耗和业务稳定性的平衡,特制定双流建设标准和实施流程以引导业务方合理评估双流需求,顺利开展双流建设实施。
1.2 数据双流的建设评估维度和标准
02
大数据双流憋坝高保真压测
理解,首先 MCube 会依据模板缓存状态判断是否需要网络获取最新模板,当获取到模板后进行模板加载,加载阶段会将产物转换为视图树的结构,转换完成后将通过表达式引擎解析表达式并取得正确的值,通过事件解析引擎解析用户自定义事件并完成事件的绑定,完成解析赋值以及事件绑定后进行视图的渲染,最终将目标页面展示到屏幕。
2.1 双流憋坝压测
2.2 双流憋坝的压测目标制定
压测目标设定,一般会参照历史峰值和市场预估,给出核心交易、流量主题链路峰值预估,例如22年双11的1.2倍。关键的数据流topic,会给出预估消费峰值供下游参考,如下表格所示(数据涉及保密不做详细展示)。
2.3 双流憋坝的压测方案
(1)交易的憋坝方式,通过停止同步任务憋单 ,交易双流架构图如下所示:
(2)流量的憋坝方式,流量无损憋坝压测是通过停止采集服务写JDQ写集群的方式憋流,不参与压测的业务方,可以切换到“JDQ4澜沧江_点击流新建流”(压测期间新建JDQ写集群),保证下游业务可以在憋流压测期间,正常消费流量实时数据,做到无损。
2.4 双流憋坝压测规范
2.5 失真场景的高保真压测
如下图所示:黄色部分为在线军演提供数据的对应存储——影子库表 。绿色部分为压测新增,最上层为压测数据源(JMQ/JDQ) ,下面是为了压测搭建的透传压测环境以及写影子存储。黄金眼预售通用源和商智预售交易通用源对应任务改成双进双出,同时可以处理线上数据源和压测数据源,线上数据写入线上输出topic和线上存储。压测数据源的数据处理后输出压测数据的topic,写入影子存储。这样线上拓扑不用随着每次压测改动,同时,下游业务方也可以灵活选择是否参与压测。
03
双流憋坝压测期间,业务方的迁移方案
理解,首先 MCube 会依据模板缓存状态判断是否需要网络获取最新模板,当获取到模板后进行模板加载,加载阶段会将产物转换为视图树的结构,转换完成后将通过表达式引擎解析表达式并取得正确的值,通过事件解析引擎解析用户自定义事件并完成事件的绑定,完成解析赋值以及事件绑定后进行视图的渲染,最终将目标页面展示到屏幕。
3.1 双流憋坝压测对于业务方的影响
3.2 不参与压测的业务方的迁移方案
A、交易不涉及,交易从源头topic都是双流双活,业务可以切换消费到不压测机房对应的topic即可
A、交易是双流,廊坊和汇天都有对应的topic,不参与压测的业务方可以申请,消费非压测机房对应的topic即可
04 总结
理解,首先 MCube 会依据模板缓存状态判断是否需要网络获取最新模板,当获取到模板后进行模板加载,加载阶段会将产物转换为视图树的结构,转换完成后将通过表达式引擎解析表达式并取得正确的值,通过事件解析引擎解析用户自定义事件并完成事件的绑定,完成解析赋值以及事件绑定后进行视图的渲染,最终将目
单体分层应用架构剖析
JDK 17 营销初体验 —— 亚毫秒停顿 ZGC 落地实践
从原理聊JVM:染色标记和垃圾回收算法
求分享
求点赞
求在看