记一次生成慢sql索引优化及思考
Tech
01 问题重现
在今年的敏捷团队建设中,我通过Suite执行器实现了一键自动化单元测试。Juint除了Suite执行器还有哪些执行器呢?由此我的Runner探索之旅开始了!
夜黑风高的某一晚,突然收到一条运营后台数据库慢sql的报警,耗时竟然达到了60s。
02 问题排查
理解,首先 MCube 会依据模板缓存状态判断是否需要网络获取最新模板,当获取到模板后进行模板加载,加载阶段会将产物转换为视图树的结构,转换完成后将通过表达式引擎解析表达式并取得正确的值,通过事件解析引擎解析用户自定义事件并完成事件的绑定,完成解析赋值以及事件绑定后进行视图的渲染,最终将目标页面展示到屏幕。
在examine=2时查询速度很快,但是在examine=3时,查询速度极慢,然后分别在不同的examine下查看执行计划,得到的执行计划都是一致的。
查看执行计划,发现possible_keys中有idx_gear_id索引,但是实际用到的key却是PRIMARY,并且extra中明确用了where条件进行数据过滤。到现在就明白了这个sql是在主键聚簇索引上进行扫描,然后用where语句条件进行过滤,时间耗费在这了。
这个也解释了为什么examine在不同状态下的耗时不一样,取决于where过滤扫描的行数,扫描行数越多,执行越慢,但同一个问题是都没走到我们已有的索引idx_gear_id。
当单表数量较小时,无论有没有索引,或者走主键索引扫描或者普通索引都很快,很容易忽略这些问题,此时的表现就是你好,我好,大家好,然后随着数据量的增大,当达到千万级别或者亿级时,慢查询的问题就凸显出来了。
03 原理剖析
理解,首先 MCube 会依据模板缓存状态判断是否需要网络获取最新模板,当获取到模板后进行模板加载,加载阶段会将产物转换为视图树的结构,转换完成后将通过表达式引擎解析表达式并取得正确的值,通过事件解析引擎解析用户自定义事件并完成事件的绑定,完成解析赋值以及事件绑定后进行视图的渲染,最终将目标页面展示到屏幕。
为什么mysql会选择这个不合适的主键聚簇索引?
以常用的InnoDb存储引擎为例,看一下聚簇索引和非聚簇索引查询区别:
聚簇索引:通常就是按照每张表的主键构造一颗B+树,叶子节点中存放的就是整张表的行记录数据,即数据和主键都在索引上
非聚簇索引:表的二级索引字段(比如唯一索引,联合索引等)构造的一颗B+树,叶子节点存储的是Key字段+主键值,即非聚集索引的叶节仍然是索引节点,但它有一个指向最终数据索引的指针。
聚簇索引查询原理:
回到为什么mysql会选择这个不合适的主键聚簇索引问题本身,mysql执行器认为使用二级索引查出来的数据太多了,还需要基于磁盘做临时存储进行排序,然后排序取出10条,然后进行回表查询字段,性能可能会很差,所以采用了直接采用了按顺序扫描主键聚簇索引,和where条件gear_id=xxx and examine=xxx进行对比,最多放10条即可,这种情况就是数量小的时候没问题,但是当数据量大的时候,就需要一直扫描所有的数据,直到查到符合where条件的10条数据为止,同时耗时也急剧增长。
04 解决问题
理解,首先 MCube 会依据模板缓存状态判断是否需要网络获取最新模板,当获取到模板后进行模板加载,加载阶段会将产物转换为视图树的结构,转换完成后将通过表达式引擎解析表达式并取得正确的值,通过事件解析引擎解析用户自定义事件并完成事件的绑定,完成解析赋值以及事件绑定后进行视图的渲染,最终将目标页面展示到屏幕。
以下为使用强制索引的执行计划:
05 长期优化
理解,首先 MCube 会依据模板缓存状态判断是否需要网络获取最新模板,当获取到模板后进行模板加载,加载阶段会将产物转换为视图树的结构,转换完成后将通过表达式引擎解析表达式并取得正确的值,通过事件解析引擎解析用户自定义事件并完成事件的绑定,完成解析赋值以及事件绑定后进行视图的渲染,最终将目标页面展示到屏幕。
es数据同步方案:
京东流水线——满足你对工作流编排的一切幻想Java浅拷贝BeanUtils.copyProperties引发的RPC异常大文件上传实践分享
求分享
求点赞
求在看