查看原文
其他

【推荐】SLAM相关资源大列表



点击上方“机器学习研究会”可以订阅
摘要
 

转自:爱可可-爱生活

Simultaneous Localization and Mapping, also known as SLAM, is the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it.

News

  • For researchers, please read the recent review paper, Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age, from Cesar Cadena, Luca Carlone et al.

Table of Contents

  • Books

  • Courses, Lectures and Workshops

  • Papers

  • Researchers

  • Datasets

  • Code

  • Miscellaneous

  • Contributing

Books

  • State Estimation for Robotic -- A Matrix Lie Group Approach by Timothy D. Barfoot, 2016

  • Simultaneous Localization and Mapping for Mobile Robots: Introduction and Methods by Juan-Antonio Fernández-Madrigal and José Luis Blanco Claraco, 2012

  • Simultaneous Localization and Mapping: Exactly Sparse Information Filters by Zhan Wang, Shoudong Huang and Gamini Dissanayake, 2011

  • Probabilistic Robotics by Dieter Fox, Sebastian Thrun, and Wolfram Burgard, 2005

  • An Invitation to 3-D Vision -- from Images to Geometric Models by Yi Ma, Stefano Soatto, Jana Kosecka and Shankar S. Sastry, 2005

  • Multiple View Geometry in Computer Vision by Richard Hartley and Andrew Zisserman, 2004

  • Numerical Optimization by Jorge Nocedal and Stephen J. Wright, 1999

Courses, Lectures and Workshops

  • SLAM Tutorial@ICRA 2016

  • Geometry and Beyond - Representations, Physics, and Scene Understanding for Robotics at Robotics: Science and Systems (2016)

  • Robotics - UPenn on Coursera by Vijay Kumar (2016)

  • Robot Mapping - UniFreiburg by Gian Diego Tipaldi and Wolfram Burgard (2015-2016)

  • Robot Mapping - UniBonn by Cyrill Stachniss (2016)

  • Introduction to Mobile Robotics - UniFreiburg by Wolfram Burgard, Michael Ruhnke and Bastian Steder (2015-2016)

  • Computer Vision II: Multiple View Geometry - TUM by Daniel Cremers ( Spring 2016)

  • Advanced Robotics - UCBerkeley by Pieter Abbeel (Fall 2015)

  • Mapping, Localization, and Self-Driving Vehicles at CMU RI seminar by John Leonard (2015)

  • The Problem of Mobile Sensors: Setting future goals and indicators of progress for SLAM sponsored by Australian Centre for Robotics and Vision (2015)

  • Robotics - UPenn by Philip Dames and Kostas Daniilidis (2014)

  • Autonomous Navigation for Flying Robots on EdX by Jurgen Sturm and Daniel Cremers (2014)

  • Robust and Efficient Real-time Mapping for Autonomous Robots at CMU RI seminar by Michael Kaess (2014)

  • KinectFusion - Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera by David Kim (2012)

  • SLAM Summer School organized by Australian Centre for Field Robotics (2009)

  • SLAM Summer School organized by University of Oxford and Imperial College London (2006)

  • SLAM Summer School organized by KTH Royal Institute of Technology (2002)

Papers

  • Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age (2016)

  • Direct Sparse Odometry (2016)

  • Modelling Uncertainty in Deep Learning for Camera Relocalization (2016)

  • Large-Scale Cooperative 3D Visual-Inertial Mapping in a Manhattan World (2016)

  • Towards Lifelong Feature-Based Mapping in Semi-Static Environments (2016)

  • Tree-Connectivity: Evaluating the Graphical Structure of SLAM (2016)

  • Visual-Inertial Direct SLAM (2016)

  • A Unified Resource-Constrained Framework for Graph SLAM (2016)

  • Multi-Level Mapping: Real-time Dense Monocular SLAM (2016)

  • Lagrangian duality in 3D SLAM: Verification techniques and optimal solutions (2015)

  • A Solution to the Simultaneous Localization and Map Building (SLAM) Problem

  • Simulataneous Localization and Mapping with the Extended Kalman Filter

Researchers

United States

  • John Leonard

  • Sebastian Thrun

  • Frank Dellaert

  • Dieter Fox

  • Stergios I. Roumeliotis

  • Vijay Kumar

  • Ryan Eustice

  • Michael Kaess

  • Guoquan (Paul) Huang

  • Gabe Sibley

  • Luca Carlone

  • Andrea Censi

Europe

  • Paul Newman

  • Roland Siegwart

  • Juan Nieto

  • Wolfram Burgard

  • Jose Neira

  • Davide Scaramuzza

Australia

  • Cesar Cadena

  • Ian Reid

  • Tim Bailey

  • Gamini Dissanayake

  • Shoudong Huang

Datasets

  1. Intel Research Lab (Seattle)

Code

  1. ORB-SLAM

  2. LSD-SLAM

  3. ORB-SLAM2

  4. DVO: Dense Visual Odometry

  5. SVO: Semi-Direct Monocular Visual Odometry

  6. G2O: General Graph Optimization

  7. RGBD-SLAM


链接:

https://github.com/kanster/awesome-slam


原文链接:

https://m.weibo.cn/1402400261/4140930397690270

“完整内容”请点击【阅读原文】
↓↓↓


    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存