查看原文
其他

Cell | 突破!郭红卫/柴继杰合作团队揭示植物感知胞外pH的机制

枫叶 iNature 2022-09-23
细胞外pH对于动物、植物、微生物的生长发育以及免疫都起着重要的调控作用。例如人体血液pH维持在7.35-7.45,位于细胞膜表面的络氨酸受体激酶(RTKs),G蛋白偶联受体 (GPCRs) 及氢离子敏感离子通道能够感应血液pH的细微变化,调节人体生长发育、免疫应答等过程。细菌也能通过多种酸性或碱性敏感的膜表面蛋白复合体感应环境pH变化,调节自身信号通路。
植物细胞外pH呈酸性(pH 5.7),许多生理和外界环境因素都会引起胞外pH的改变。上世纪七十年代,科学家提出了植物 “酸生长理论” ,猜想生长素能够激活细胞膜上的H+-ATP酶引起胞外pH酸化,松弛细胞壁,从而促进细胞生长。上世纪九十年代,科学家发现植物激发免疫反应会引起胞外pH碱化。该现象会在病原菌入侵的几分钟之内发生,并持几十小时。
过去几十年间,胞外pH碱化一直被作为植物免疫反应的标志之一。尤其是在病原菌相关联分子模式(PAMP)激发的免疫反应(PTI)研究中,植物免疫学家利用胞外碱化作为指标,成功鉴定出了许多重要PAMP免疫分子的活性形式,例如flg22,Pep1。不仅是生物胁迫,非生物胁迫,如干旱、盐碱也都会引起胞外pH的快速碱化。然而免疫胁迫引起的胞外碱化的生物学意义仍不清楚。此外,气候、肥料、微生物也都会引起土壤pH的改变。许多研究发现外界环境pH的变化能够显著地影响植物基因表达,表明植物具备感应外界pH 的能力。然而植物如何感知胞外pH变化仍是一个未解之谜。
2022年8月22日,南方科技大学郭红卫教授团队与清华大学-德国马克斯普朗克研究所-科隆大学柴继杰教授团队合作在Cell 发表了题为“ Extracellular pH sensing by plant cell-surface peptide-receptor complexes”的研究论文,该研究揭示了细胞表面的小肽-受体复合物作为胞外pH感受器,调控植物生长和免疫的机制。
研究人员首先通过HPTS染色原位观察到植物根尖分生组织细胞外呈现相对酸性的pH环境。当对植物处理免疫小肽Pep1或病原菌相关分子模式(PAMP)时,根尖分生区胞外pH会迅速升高,表明免疫反应会引起根尖分生组织胞外碱化。同时 Pep1激发的免疫反应显著地抑制了根尖分生组织生长。进一步实验表明,Pep1引起的免疫反应抑制了促进根干细胞生长的小肽激素RGF1信号通路,降低了根尖生长发育关键转录因子PLT1/2的表达。
有意思的是,Pep1引起根尖胞外碱化的区域与RGF1和PLT1/2表达区域高度吻合,且RGF1是分泌型小肽信号分子,与受体相互作用发生在胞外,因此研究人员猜测是否是免疫引起的胞外碱化影响了RGF1信号通路。研究人员利用H+-ATP酶抑制剂或是直接升高培养基pH来模拟免疫反应引起的胞外碱化,结果与猜想一致,胞外碱化本身便足以抑制RGF1信号通路,进而证明RGF1信号通路能够响应胞外pH变化。
图1. 根干细胞生长因子RGF1受体复合物感应免疫小肽Pep1引起的胞外碱化
研究人员进一步探究,利用生化、遗传、结构等综合手段,揭示了RGF1信号通路感应胞外pH的分子机制。研究发现,分泌型小肽信号分子RGF1上有一个磺酸化修饰(sY),该修饰对于RGF1小肽与其细胞膜表面受体(RGI/RGFR)结合至关重要。当胞外的pH维持在酸性环境时,RGF1的磺酸化修饰(sY)处于质子化状态,与受体上的RxGG 基序有强烈的氢键相互作用,介导了小肽与受体的互作,从而诱导了受体和共受体复合物的形成,激活了下游信号通路。当胞外的pH发生碱化时,RGF1的磺酸化修饰(sY)被去质子化,与受体的相互作用大大减弱,从而不能诱导受体和共受体复合物的形成,阻断了下游信号通路的激活。
此外研究人员还发现,不仅RGF1信号通路能够感应胞外pH的变化,Pep1介导的免疫信号通路也能响应胞外pH的变化。有意思的是,与酸性依赖的RGF1生长信号通路截然相反,Pep1免疫信号通路呈现出碱性依赖。免疫引起的胞外碱化会进一步促进Pep1激发的免疫反应。进一步研究表明,Pep1受体PEPR上有许多酸性氨基酸(天冬氨酸和谷氨酸)参与了Pep1小肽识别。
当胞外的pH维持在酸性环境时,天冬氨酸和谷氨酸处于质子化状态,破坏了Pep1与受体的相互作用,阻碍受体和共受体复合物的形成。当胞外的pH发生碱化时,天冬氨酸和谷氨酸处于去质子化状态,小肽与受体的相互作用大大增强,从而促进了受体和共受体复合物的形成,激活下游免疫信号通路。值得一提的是,研究人员还尝试将RGF1受体与Pep1受体的胞外结构域进行了替换,发现当把RGFR的胞外域替换为PEPR的胞外域后,根尖分生组织由RGF1介导的酸性依赖生长,逆转成了Pep1介导的碱性依赖生长,从而进一步证实了RGF1信号通路和Pep1信号通路通过受体复合物胞外区直接感应胞外pH变化。
图2. 细胞膜表面小肽受体复合物感应胞外pH模式图
综上所述,该研究首次发现了植物胞外pH的感应器,揭示了植物细胞膜表面小肽受体复合物能够感应胞外pH的变化,调控植物生长发育与免疫。同时该研究还揭示了 “胞外碱化”这一植物免疫反应标志,能够作为一个信号分子调控植物生长及免疫的进程,减缓生长,增强免疫,从而优化能量,增强环境适应性。此外,酸性依赖的RGF1信号通路促进根尖分生组织生长的机制,进一步完善了 “酸生长理论”。该研究也为未来农业生产中利用 “酸碱调控” 来调节作物生长、抗病、抗逆,提供了理论基础和新的方向。
北京大学博士/南方科技大学访问学者,现德国马克斯普朗克研究所博士后刘莉,与清华大学博士,现德国马克斯普朗克研究所博士后宋文,为本文共同第一作者。南方科技大学郭红卫教授和清华大学-德国马普所-科隆大学柴继杰教授为共同通讯作者。南方科技大学姜凯博士、王益川博士、张丹博士、温兴博士,清华大学韩志富副研究员,博士生黄诗嘉,日本东京大学Yoshitaka Moriwaki博士,中国科学院深圳先进技术研究院门涌帆博士参与了该研究工作。

END内容为【iNature】公众号原创,转载请写明来源于【iNature】


微信加群


iNature汇集了4万名生命科学的研究人员及医生。我们组建了80个综合群(16个PI群及64个博士群),同时更具专业专门组建了相关专业群(植物,免疫,细胞,微生物,基因编辑,神经,化学,物理,心血管,肿瘤等群)。温馨提示:进群请备注一下(格式如学校+专业+姓名,如果是PI/教授,请注明是PI/教授,否则就直接默认为在读博士,谢谢)。可以先加小编微信号(iNature5),或者是长按二维码,添加小编,之后再进相关的群,非诚勿扰。



投稿、合作、转载授权事宜

请联系微信ID:18217322697 或邮箱:921253546@qq.com



觉得本文好看,请点这里!

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存