其他
MapReduce Join
分享两段代码,可以直接在项目中复用:
Map Side Join
package MapJoin;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.util.HashMap;
import java.util.Map;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
/*
*
Table1
011990-99999 SIHCCAJAVRI
012650-99999 TYNSET-HANSMOEN
Table2
012650-99999 194903241200 111
012650-99999 194903241800 78
011990-99999 195005150700 0
011990-99999 195005151200 22
011990-99999 195005151800 -11
* */
public class MapJoin {
static class mapper extends Mapper<LongWritable, Text, Text, Text> {
private Map<String, String> Table1Map = new HashMap<String, String>();
// 将小表读到内存HashMap中
protected void setup(Context context) throws IOException {
URI[] paths = context.getCacheFiles();
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf);
FSDataInputStream fsr = fs.open(new Path(paths[0].toString()));
// BufferedReader br = new BufferedReader(new FileReader(
// paths[0].toString()));
String line = null;
try {
while ((line = fsr.readLine().toString()) != null) {
String[] vals = line.split("\\t");
if (vals.length == 2) {
Table1Map.put(vals[0], vals[1]);
}
}
} catch (Exception e) {
// TODO: handle exception
e.printStackTrace();
} finally {
fsr.close();
}
}
// 对大表进行Map扫描
protected void map(LongWritable key, Text val, Context context)
throws IOException, InterruptedException {
String[] vals = val.toString().split("\\t");
if (vals.length == 3) {
// 每条记录都用外键对HashMap get
String Table1Vals = Table1Map.get(vals[0]);
Table1Vals = (Table1Vals == null) ? "" : Table1Vals;
context.write(new Text(vals[0]), new Text(Table1Vals + "\t"
+ vals[1] + "\t" + vals[2]));
}
}
}
public static void main(String[] args) throws IOException,
ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
if (otherArgs.length != 3) {
System.err
.println("Parameter number is wrong, please enter three parameters:<big table hdfs input> <small table local input> <hdfs output>");
System.exit(-1);
}
Job job = new Job(conf, "MapJoin");
job.setJarByClass(MapJoin.class);
job.setMapperClass(mapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
job.addCacheFile((new Path(args[1]).toUri()));
FileOutputFormat.setOutputPath(job, new Path(args[2]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
Reduce Side Join
package ReduceJoin;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/*user.csv文件:
"ID","NAME","SEX"
"1","user1","0"
"2","user2","0"
"3","user3","0"
"4","user4","1"
"5","user5","0"
"6","user6","0"
"7","user7","1"
"8","user8","0"
"9","user9","0"
order.csv文件:
"USER_ID","NAME"
"1","order1"
"2","order2"
"3","order3"
"4","order4"
"7","order7"
"8","order8"
"9","order9"
*/
public class ReduceJoin {
public static class MapClass extends
Mapper<LongWritable, Text, Text, Text>
{
//最好在map方法外定义变量,以减少map计算时创建对象的个数
private Text key = new Text();
private Text value = new Text();
private String[] keyValue = null;
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException
{
//value是每一行的内容,Text类型,所有我们要把key从value中解析出来
keyValue = value.toString().split(",", 2);
this.key.set(keyValue[0]); //把外键设为MapReduce key
this.value.set(keyValue[1]);
context.write(this.key, this.value);
}
}
public static class Reduce extends Reducer<Text, Text, Text, Text>
{
private Text value = new Text();
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException
{
StringBuilder valueStr = new StringBuilder();
//values中的每一个值是不同数据文件中的具有相同key的值
//即是map中输出的多个文件相同key的value值集合
for(Text val : values)
{
valueStr.append(val);
valueStr.append(",");
}
this.value.set(valueStr.deleteCharAt(valueStr.length()-1).toString());
context.write(key, this.value);
}
}
public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {
// TODO Auto-generated method stub
Configuration conf = new Configuration();
Job job = new Job(conf, "MyJoin");
job.setJarByClass(ReduceJoin.class);
job.setMapperClass(MapClass.class);
job.setReducerClass(Reduce.class);
//job.setCombinerClass(Reduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
分享和点赞是最大的支持~