查看原文
其他

Flink之实时统计热门商品的TopN

大数据技术与架构点击右侧关注,大数据开发领域最强公众号!

暴走大数据点击右侧关注,暴走大数据!

文章目录

    一、需求说明

        1、以案例驱动理解

    二、技术点

    三、代码实现(一)

        1、调用底层的Process(可做类似map的操作),将Json字符串解析成MyBehavior对象

        2、提取EventTime,转换成Timestamp格式,生成WaterMark

        3、按照指定事件分组

        4、把分好组的数据,划分窗口:假设窗口总长10分钟, 步长1分钟滑动一次

        5、窗口内的数据进行聚合,拿出窗口Star时间和窗口End时间

    四、定义的单独类MyBehavior 和 ItemViewCount

        1、MyBehavior

        2、ItemViewCount

    五、最终结果

    六、代码实现(二) 更高级

        1、单独类 MyWindowAggFunction

        2、单独类 MyWindowFunction

   七、对聚合好的窗口内数据排序

        1、分组

        2、排序


一、需求说明

统计一定时间段内的,热门商品/品牌TopN

1、以案例驱动理解

  • 数据:

{"userId": "u001", "itemId": "p1001", "categoryId": "c11", type: "pv", "timestamp": "2020-03-08 11:11:11"}{"userId": "u002", "itemId": "p1001", "categoryId": "c11", type: "pv", "timestamp": "2020-03-08 11:11:11"}{"userId": "u003", "itemId": "p1001", "categoryId": "c11", type: "pv", "timestamp": "2020-03-08 11:11:11"}{"userId": "u003", "itemId": "p1001", "categoryId": "c11", type: "cart", "timestamp": "2020-03-08 11:11:11"}{"userId": "u011", "itemId": "p2222", "categoryId": "c22", type: "pv", "timestamp": "2020-03-08 11:11:11"}{"userId": "u012", "itemId": "p2222", "categoryId": "c22", type: "pv", "timestamp": "2020-03-08 11:11:11"}{"userId": "u012", "itemId": "p2222", "categoryId": "c22", type: "pv", "timestamp": "2020-03-08 11:12:01"}{"userId": "u001", "itemId": "p1001", "categoryId": "c11", type: "pv", "timestamp": "2020-03-08 11:12:01"}{"userId": "u002", "itemId": "p1001", "categoryId": "c11", type: "pv", "timestamp": "2020-03-08 11:12:01"}{"userId": "u003", "itemId": "p1001", "categoryId": "c11", type: "pv", "timestamp": "2020-03-08 11:12:01"}{"userId": "u003", "itemId": "p1001", "categoryId": "c11", type: "cart", "timestamp": "2020-03-08 11:12:01"}{"userId": "u011", "itemId": "p2222", "categoryId": "c22", type: "pv", "timestamp": "2020-03-08 11:12:01"}{"userId": "u012", "itemId": "p2222", "categoryId": "c22", type: "pv", "timestamp": "2020-03-08 11:12:01"}{"userId": "u011", "itemId": "p2222", "categoryId": "c22", type: "pv", "timestamp": "2020-03-08 11:13:01"}


二、技术点

Flink的EventTime

Flink的滑动窗口(滚动窗口也可以完成 ,但是生成的结果太突兀,没有平滑性)

Flink的定时器

三、代码实现(一) 

使用window.apply( )方法 → 见第5步

窗口触发时,会执行一次apply,相当于对窗口中的全量数据进行计算(全部拿出在计算)

窗口不触发,会把数据缓存在内存中,当窗口特别长时,那么这种apply不太好

1、调用底层的Process(可做类似map的操作),将Json字符串解析成MyBehavior对象

import com.alibaba.fastjson.JSON;import org.apache.flink.api.java.tuple.Tuple;import org.apache.flink.streaming.api.TimeCharacteristic;import org.apache.flink.streaming.api.datastream.DataStreamSource;import org.apache.flink.streaming.api.datastream.KeyedStream;import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;import org.apache.flink.streaming.api.datastream.WindowedStream;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.api.functions.ProcessFunction;import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;import org.apache.flink.streaming.api.functions.windowing.WindowFunction;import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;import org.apache.flink.streaming.api.windowing.time.Time;import org.apache.flink.streaming.api.windowing.windows.TimeWindow;import org.apache.flink.util.Collector;
public class HotGoodsTopN { public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 选择EventTime作为Flink的时间env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); // 设置checkPoint时间 env.enableCheckpointing(60000); // 设置并行度 env.setParallelism(1);
DataStreamSource<String> lines = env.socketTextStream("linux01", 8888);
SingleOutputStreamOperator<MyBehavior> process = lines.process(new ProcessFunction<String, MyBehavior>() { @Override public void processElement(String input, Context ctx, Collector<MyBehavior> out) throws Exception {
try { // FastJson 会自动把时间解析成long类型的TimeStamp MyBehavior behavior = JSON.parseObject(input, MyBehavior.class); out.collect(behavior); } catch (Exception e) { e.printStackTrace(); //TODO 记录出现异常的数据 } }        });

2、提取EventTime,转换成Timestamp格式,生成WaterMark

// 设定延迟时间 SingleOutputStreamOperator<MyBehavior> behaviorDSWithWaterMark = process.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<MyBehavior>(Time.seconds(0)) { @Override public long extractTimestamp(MyBehavior element) { return element.timestamp; }                });

3、按照指定事件分组

// 某个商品,在窗口时间内,被(点击、购买、添加购物车、收藏)了多少次KeyedStream<MyBehavior, Tuple> keyed = behaviorDSWithWaterMark.keyBy("itemId", "type");

4、把分好组的数据,划分窗口:假设窗口总长10分钟, 步长1分钟滑动一次

WindowedStream<MyBehavior, Tuple, TimeWindow> window =                keyed.window(SlidingEventTimeWindows.of(Time.minutes(10), Time.minutes(1)));

5、窗口内的数据进行聚合,拿出窗口Star时间和窗口End时间

//参数:输入的数据类, 输出的数据类,分组字段tuple, 窗口对象TimeWindowSingleOutputStreamOperator<ItemViewCount> result = window.apply(new WindowFunction<MyBehavior, ItemViewCount, Tuple, TimeWindow>() { @Override public void apply(Tuple tuple, TimeWindow window, Iterable<MyBehavior> input, Collector<ItemViewCount> out) throws Exception { //拿出分组的字段 String itemId = tuple.getField(0); String type = tuple.getField(1);
//拿出窗口的起始和结束时间 long start = window.getStart(); long end = window.getEnd();
// 编写累加的逻辑 int count = 0;
for (MyBehavior myBehavior : input) { count += 1; }
//输出结果 out.collect(ItemViewCount.of(itemId, type, start, end, count)); } });
result.print(); env.execute("HotGoodsTopN");
}}

四、定义的单独类MyBehavior 和 ItemViewCount

  • MyBehavior → 解析Json字符串后生成的JavaBean

  • ItemViewCount → 最后结果输出的格式类

1、MyBehavior

import java.sql.Timestamp;
public class MyBehavior { public String userId; // 用户ID public String itemId; // 商品ID public String categoryId; // 商品类目ID public String type; // 用户行为, 包括("pv", "buy", "cart", "fav") public long timestamp; // 行为发生的时间戳,单位秒 public long counts = 1;
public static MyBehavior of(String userId, String itemId, String categoryId, String type, long timestamp) { MyBehavior behavior = new MyBehavior(); behavior.userId = userId; behavior.itemId = itemId; behavior.categoryId = categoryId; behavior.type = type; behavior.timestamp = timestamp; return behavior; }
public static MyBehavior of(String userId, String itemId, String categoryId, String type, long timestamp, long counts) { MyBehavior behavior = new MyBehavior(); behavior.userId = userId; behavior.itemId = itemId; behavior.categoryId = categoryId; behavior.type = type; behavior.timestamp = timestamp; behavior.counts = counts; return behavior; }
@Override public String toString() { return "MyBehavior{" + "userId='" + userId + '\'' + ", itemId='" + itemId + '\'' + ", categoryId='" + categoryId + '\'' + ", type='" + type + '\'' + ", timestamp=" + timestamp + "," + new Timestamp(timestamp) + "counts=" + counts + '}'; }
public String getUserId() { return userId; } public String getItemId() { return itemId; } public String getCategoryId() { return categoryId; } public String getType() { return type; } public long getTimestamp() { return timestamp; } public long getCounts() { return counts; }}

2、ItemViewCount

import java.sql.Timestamp;
public class ItemViewCount { public String itemId; // 商品ID public String type; // 事件类型 public long windowStart; // 窗口开始时间戳 public long windowEnd; // 窗口结束时间戳 public long viewCount; // 商品的点击量
public static ItemViewCount of(String itemId, String type, long windowStart, long windowEnd, long viewCount) { ItemViewCount result = new ItemViewCount(); result.itemId = itemId; result.type = type; result.windowStart = windowStart; result.windowEnd = windowEnd; result.viewCount = viewCount; return result; }
@Override public String toString() { return "{" + "itemId='" + itemId + '\'' + "type='" + type + '\'' + ", windowStart=" + windowStart + " , " + new Timestamp(windowStart) + ", windowEnd=" + windowEnd + " , " + new Timestamp(windowEnd) + ", viewCount=" + viewCount + '}'; }}

五、最终结果

  • 1分钟窗口一滑动一统计

  • 11:11:12:01统计一次之前的,11:13:01统计一次之前的

{itemId='p1001'type='pv', windowStart=1583636520000 , 2020-03-08 11:02:00.0, windowEnd=1583637120000 , 2020-03-08 11:12:00.0, viewCount=3}{itemId='p1001'type='cart', windowStart=1583636520000 , 2020-03-08 11:02:00.0, windowEnd=1583637120000 , 2020-03-08 11:12:00.0, viewCount=1}{itemId='p2222'type='pv', windowStart=1583636520000 , 2020-03-08 11:02:00.0, windowEnd=1583637120000 , 2020-03-08 11:12:00.0, viewCount=2}
{itemId='p1001'type='cart', windowStart=1583636580000 , 2020-03-08 11:03:00.0, windowEnd=1583637180000 , 2020-03-08 11:13:00.0, viewCount=2}{itemId='p1001'type='pv', windowStart=1583636580000 , 2020-03-08 11:03:00.0, windowEnd=1583637180000 , 2020-03-08 11:13:00.0, viewCount=6}{itemId='p2222'type='pv', windowStart=1583636580000 , 2020-03-08 11:03:00.0, windowEnd=1583637180000 , 2020-03-08 11:13:00.0, viewCount=5}

六、代码实现(二)

优化点:在窗口内增量聚合 (来一个加一个,内存中只保存一个数字而已)

/** 使用这种aggregate聚合方法: * * public <ACC, V, R> SingleOutputStreamOperator<R> aggregate( * AggregateFunction<T, ACC, V> aggFunction, * WindowFunction<V, R, K, W> windowFunction) {} */ SingleOutputStreamOperator<ItemViewCount> windowAggregate = window.aggregate(new MyWindowAggFunction(),                new MyWindowFunction());

1、单独类 MyWindowAggFunction

  • 拿到聚合字段(MyBehavior中counts)

三个泛型:

  • 第一个输入的类型

  • 第二个计数/累加器的类型

  • 第三个输出的数据类型

// public static class MyWindowAggFunction implements AggregateFunction<MyBehavior, Long, Long> {
//初始化一个计数器 @Override public Long createAccumulator() { return 0L; }
//每输入一条数据就调用一次add方法 @Override public Long add(MyBehavior input, Long accumulator) { return accumulator + input.counts; }
@Override public Long getResult(Long accumulator) { return accumulator; }
//只针对SessionWindow有效,对应滚动窗口、滑动窗口不会调用此方法 @Override public Long merge(Long a, Long b) { return null; }    }

2、单独类 MyWindowFunction

拿到窗口的开始时间和结束时间,拿出分组字段


传入4个泛型:


  • 第一个:输入的数据类型(Long类型的次数),也就是 MyWindowAggFunction中聚合后的结果值

  • 第二个:输出的数据类型(ItemViewCount)

  • 第三个:分组的key(分组的字段)

  • 第四个:窗口对象(起始时间、结束时间)

public static class MyWindowFunction implements WindowFunction<Long, ItemViewCount, Tuple, TimeWindow> {
@Override public void apply(Tuple tuple, TimeWindow window, Iterable<Long> input, Collector<ItemViewCount> out) throws Exception { String itemId = tuple.getField(0); String type = tuple.getField(1);
long windowStart = window.getStart(); long windowEnd = window.getEnd();
//窗口集合的结果 Long aLong = input.iterator().next();
//输出数据 out.collect(ItemViewCount.of(itemId, type, windowStart, windowEnd, aLong));        }

七、对聚合好的窗口内数据排序

  • 按照窗口的start、end进行分组,将窗口相同的数据进行排序

  • 必须是在同一时间段的窗口

1、分组

KeyedStream<ItemViewCount, Tuple> soredKeyed = windowAggregate.keyBy("type", "windowStart",                "windowEnd");

2、排序

SingleOutputStreamOperator<List<ItemViewCount>> sored = soredKeyed.process(new KeyedProcessFunction<Tuple, ItemViewCount, List<ItemViewCount>>() { private transient ValueState<List<ItemViewCount>> valueState;
// 要把这个时间段的所有的ItemViewCount作为中间结果聚合在一块,引入ValueState @Override public void open(Configuration parameters) throws Exception { ValueStateDescriptor<List<ItemViewCount>> VSDescriptor = new ValueStateDescriptor<>("list-state", TypeInformation.of(new TypeHint<List<ItemViewCount>>() { }) );
valueState = getRuntimeContext().getState(VSDescriptor);
}
//更新valueState 并注册定时器 @Override public void processElement(ItemViewCount input, Context ctx, Collector<List<ItemViewCount>> out) throws Exception { List<ItemViewCount> buffer = valueState.value(); if (buffer == null) { buffer = new ArrayList<>(); } buffer.add(input); valueState.update(buffer); //注册定时器,当为窗口最后的时间时,通过加1触发定时器 ctx.timerService().registerEventTimeTimer(input.windowEnd + 1);
}
// 做排序操作 @Override public void onTimer(long timestamp, OnTimerContext ctx, Collector<List<ItemViewCount>> out) throws Exception {
//将ValueState中的数据取出来 List<ItemViewCount> buffer = valueState.value(); buffer.sort(new Comparator<ItemViewCount>() { @Override public int compare(ItemViewCount o1, ItemViewCount o2) { //按照倒序,转成int类型 return -(int) (o1.viewCount - o2.viewCount); } }); valueState.update(null); out.collect(buffer); } }); sored.print(); env.execute("HotGoodsTopNAdv"); }}

——END——

文章不错?点个【在看】吧! 👇

: . Video Mini Program Like ,轻点两下取消赞 Wow ,轻点两下取消在看

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存