查看原文
其他

大数据入门:Spark+Kudu的广告业务项目实战笔记(五)

点击上方蓝色字体,选择“设为星标

回复”资源“获取更多资源

大数据技术与架构点击右侧关注,大数据开发领域最强公众号!

暴走大数据点击右侧关注,暴走大数据!

Spark+Kudu的广告业务项目实战系列:
Spark+Kudu的广告业务项目实战笔记(一)

1.统计需求

本章主要实现需求四:APP统计。需求如下:

2.代码编写

入口搭好:

AppStatProcessor.process(spark)

先看一下第一步的运行情况:

package com.imooc.bigdata.cp08.business
import com.imooc.bigdata.cp08.`trait`.DataProcessimport com.imooc.bigdata.cp08.utils.SQLUtilsimport org.apache.spark.sql.SparkSession
object AppStatProcessor extends DataProcess{override def process(spark: SparkSession): Unit = {val sourceTableName = "ods"val masterAddresses = "hadoop000"
val odsDF = spark.read.format("org.apache.kudu.spark.kudu") .option("kudu.table",sourceTableName) .option("kudu.master",masterAddresses) .load()
odsDF.createOrReplaceTempView("ods")val resultTmp = spark.sql(SQLUtils.APP_SQL_STEP1) resultTmp.show()
}}

其中SQL代码如下:

lazy val APP_SQL_STEP1 = "select appid,appname, " + "sum(case when requestmode=1 and processnode >=1 then 1 else 0 end) origin_request," + "sum(case when requestmode=1 and processnode >=2 then 1 else 0 end) valid_request," + "sum(case when requestmode=1 and processnode =3 then 1 else 0 end) ad_request," + "sum(case when adplatformproviderid>=100000 and iseffective=1 and isbilling=1 and isbid=1 and adorderid!=0 then 1 else 0 end) bid_cnt," + "sum(case when adplatformproviderid>=100000 and iseffective=1 and isbilling=1 and iswin=1 then 1 else 0 end) bid_success_cnt," + "sum(case when requestmode=2 and iseffective=1 then 1 else 0 end) ad_display_cnt," + "sum(case when requestmode=3 and processnode=1 then 1 else 0 end) ad_click_cnt," + "sum(case when requestmode=2 and iseffective=1 and isbilling=1 then 1 else 0 end) medium_display_cnt," + "sum(case when requestmode=3 and iseffective=1 and isbilling=1 then 1 else 0 end) medium_click_cnt," + "sum(case when adplatformproviderid>=100000 and iseffective=1 and isbilling=1 and iswin=1 and adorderid>20000 then 1*winprice/1000 else 0 end) ad_consumption," + "sum(case when adplatformproviderid>=100000 and iseffective=1 and isbilling=1 and iswin=1 and adorderid>20000 then 1*adpayment/1000 else 0 end) ad_cost " + "from ods group by appid,appname"

结果:

没毛病就往下跑第二个SQL,具体做法和需求三区别不大:

resultTmp.createOrReplaceTempView("app_tmp")val result = spark.sql(SQLUtils.APP_SQL_STEP2) result.show()

第二个SQL如下:

lazy val APP_SQL_STEP2 = "select appid,appname, " + "origin_request," + "valid_request," + "ad_request," + "bid_cnt," + "bid_success_cnt," + "bid_success_cnt/bid_cnt bid_success_rate," + "ad_display_cnt," + "ad_click_cnt," + "ad_click_cnt/ad_display_cnt ad_click_rate," + "ad_consumption," + "ad_cost from app_tmp " + "where bid_cnt!=0 and ad_display_cnt!=0"

然后run一下,都可以就可以写入Kudu了。

3.落地Kudu

val sinkTableName = "app_stat"val partitionId = "appid"val schema = SchemaUtils.APPSchema
KuduUtils.sink(result,sinkTableName,masterAddresses,schema,partitionId) spark.read.format("org.apache.kudu.spark.kudu") .option("kudu.master",masterAddresses) .option("kudu.table",sinkTableName) .load().show()

schema:

lazy val APPSchema: Schema = { val columns = List(new ColumnSchemaBuilder("appid", Type.STRING).nullable(false).key(true).build(),new ColumnSchemaBuilder("appname", Type.STRING).nullable(false).key(true).build(),new ColumnSchemaBuilder("origin_request", Type.INT64).nullable(false).build(),new ColumnSchemaBuilder("valid_request", Type.INT64).nullable(false).build(),new ColumnSchemaBuilder("ad_request", Type.INT64).nullable(false).build(),new ColumnSchemaBuilder("bid_cnt", Type.INT64).nullable(false).build(),new ColumnSchemaBuilder("bid_success_cnt", Type.INT64).nullable(false).build(),new ColumnSchemaBuilder("bid_success_rate", Type.DOUBLE).nullable(false).build(),new ColumnSchemaBuilder("ad_display_cnt", Type.INT64).nullable(false).build(),new ColumnSchemaBuilder("ad_click_cnt", Type.INT64).nullable(false).build(),new ColumnSchemaBuilder("ad_click_rate", Type.DOUBLE).nullable(false).build(),new ColumnSchemaBuilder("ad_consumption", Type.DOUBLE).nullable(false).build(),new ColumnSchemaBuilder("ad_cost", Type.DOUBLE).nullable(false).build() ).asJavanew Schema(columns) }

看下结果:

OK收工!

版权声明:

本文为大数据技术与架构整理,原作者独家授权。未经原作者允许转载追究侵权责任。

本文编辑:冷眼丶

微信公众号|import_bigdata


欢迎点赞+收藏+转发朋友圈素质三连



文章不错?点个【在看】吧! 👇

: . Video Mini Program Like ,轻点两下取消赞 Wow ,轻点两下取消在看

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存