查看原文
其他

名师梳理|齐了!北师大版数学7-9年级上册知识点清单(打印版),初中生必看!​

初中资料,关注☞ 初中教师园地 2022-06-06

“初中教师园地”公众号

全体初中教师的精神家园!各科资料陆续推送中

学科推荐

重磅资料!史上最全的新学期班主任工作资料包

名师梳理|齐了!初中数学重点知识分类总结+知识树+易错题精编

名校密卷| 齐了!初中数学7-9年级上册第一次月考试卷

重磅资料|免费领!2020秋初中数学优质课课例(含视频+课件)

名师梳理|初中数学知识点梳理+手绘版思维导图+记忆口诀

齐了!初中数学三年知识点总结+最全公式定理+易错题精编

名校精品|限时免费领!2020中考数学专题复习微课集

名师微课|免费领!初中数学7-9年级上册同步微课集(华师大版)

官方发布!2020秋华师大版数学7-9年级上册全套名师备课资源包

官方发布!2020秋季人教版数学7-9年级上册全套名师备课资源包

名师梳理|初中数学三年最全公式定理总结+100道常考易错题

名师梳理|初中数学基础知识清单精编,初中生提分必备资料!

名校密卷|2020年郑州市中考二模全科试卷(含答案),含金量很高!

名师梳理|超全!初中数学学霸笔记(197页),初中三年都能用!

名师梳理|齐了!初中数学7-9年级上下册思维导图汇总

重磅!限时免费领!2020秋季初中全科全版本备课资料

独家整理|限时免费领!2020中考数学冲刺复习第1辑:名师考点讲练

中考备考|重点名校中考状元数学笔记,全是考试重点!

名师梳理|初中数学三年考查内容知识点整理,老师看了都说好!

教学说课|初中数学说课稿范文精选,教学必备!(建议收藏)

名师梳理|初中数学7-8年级易错知识点总结+数学公式大全,赶快收藏

熬夜整理|初中数学基础知识顺口溜+思维导图+重要易错点,太实用

名师梳理|初中数学三年重点知识框架+10大专题+易错点汇总

重磅资料|限时免费领!2020初中全科学霸笔记(含9个学科)

名师大礼包|2020秋季初中各科名师大礼包精选

七年级上册知识点


第一章  丰富的图形世界

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。


2、点、线、面、体


(1)几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。


(2)点动成线,线动成面,面动成体。


3、生活中的立体图形

柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……


第二章   有理数及其运算


1.有理数

可表示为两个整数之比形式的数。

                 正有理数                             整数  

有理数        零                       有理数

                 负有理数                             分数  


2、相反数:只有符号不同的两个数叫做互为相反数,0的相反数是0.


3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。


4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。


5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,|a|≥0。若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。互为相反数的两个数的绝对值相等。


6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。


7、有理数的运算


(1)五种运算:加、减、乘、除、乘方

多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为0,积就为0。


有理数加法法则:

同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

互为相反数的两个数相加和为0。


有理数减法法则:

减去一个数,等于加上这个数的相反数!


有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积仍为0。


有理数除法法则:

两个有理数相除,同号得正,异号得负,并把绝对值相除。

0除以任何非0的数都得0。

注意:0不能作除数。


有理数的乘方:求n个相同因数a的积的运算叫做乘方。

正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。


(2)有理数的运算顺序

先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。


(3)运算律

加法交换律、 加法结合律、乘法交换律乘法结合律乘法对加法的分配律。


8、科学记数法

一般地,一个大于10的数可以表示成的形式,其中,n是正整数,这种记数方法叫做科学记数法。(n=整数位数-1)

第三章       整式及其加减


1、代数式

用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。


注意:

①代数式中除了含有数、字母和运算符号外,还可以有括号;

②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。


※代数式的书写格式:

①代数式中出现乘号,通常省略不写,如vt;

②数字与字母相乘时,数字应写在字母前面,如4a;

③带分数与字母相乘时,应先把带分数化成假分数;

④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

⑤在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作4/(a-4);注意:分数线具有“÷”号和括号的双重作用。

⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米。


2、整式

单项式和多项式统称为整式。


①单项式:都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。

注意:

1.单独的一个数或一个字母也是单项式;

2.单独一个非零数的次数是0;

3.当单项式的系数为1或-1时,这个“1”应省略不写,如-ab的系数是-1,a3b的系数是1。


②多项式:几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。


3、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

注意:

①同类项有两个条件:所含字母相同;相同字母的指数也相同。

②同类项与系数无关,与字母的排列顺序无关;

③几个常数项也是同类项。


4、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。


5、去括号法则

①根据去括号法则去括号:

括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。


②根据分配律去括号:

括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。


6、添括号法则

添“+”号和括号,添到括号里的各项符号都不改变;添“-”号和括号,添到括号里的各项符号都要改变。


7、整式的运算:

整式的加减法:(1)去括号;(2)合并同类项。


第四章  基本平面图形


1、线段、射线、直线

名称

表示方法

端点

长度

直线

直线AB(或BA)

直线l

无端点

无法度量

射线

射线OM

1个

无法度量

线段

线段AB(或BA)

线段l

2个

可度量长度


2、直线的性质

(1)直线公理:经过两个点有且只有一条直线。(两点确定一条直线)

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。


3、线段的性质

(1)线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短)

(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

(3)线段的大小关系和它们的长度的大小关系是一致的。


4、线段的中点:

点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。


5、角

有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。


6、角的表示


角的表示方法有以下四种:

①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。


7、角的度量

角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

1°=60’,1’=60”。


8、角的平分线

从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。


9、角的性质

(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

(2)角的大小可以度量,可以比较,角可以参与运算。


10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。 


11、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。


从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n-3)条对角线,把这个n边形分割成(n-2)个三角形。


12、圆:平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。 


圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。顶点在圆心的角叫做圆心角。

第五章    一元一次方程


1、方程

含有未知数的等式叫做方程。


2、方程的解

能使方程左右两边相等的未知数的值叫做方程的解。


3、等式的性质

(1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。

(2)等式的两边同时乘以同一个数(或除以同一个不为0的数),所得结果仍是等式。


4、一元一次方程

只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。


5、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项。


6、解一元一次方程的一般步骤:

(1)去分母;(2)去括号;(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项);(4)合并同类项;(5)将未知数的系数化为1。


第六章    数据的收集与整理

1、普查与抽样调查


为了特定目的对全部考察对象进行的全面调查,叫做普查。其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。


从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。


2、扇形统计图

扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)


圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)


3、频数直方图

频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。


4、各种统计图的特点

条形统计图:能清楚地表示出每个项目的具体数目。

折线统计图:能清楚地反映事物的变化情况。

扇形统计图:能清楚地表示出各部分在总体中所占的百分比。


八年级上册知识点


第一章  勾股定理

1、勾股定理

直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。

2、勾股定理的逆定理

如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。


3、勾股数

满足的三个正整数,称为勾股数。

常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)


第二章  实数 


1、实数的概念及分类 

①实数的分类


②无理数


无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

  • 开方开不尽的数,如 √7 ,3 √2等;

  • 有特定意义的数,如圆周率π,或化简后含有π的数,π /₃+8等;

  • 有特定结构的数,如0.1010010001…等;

  • 某些三角函数值,如sin60°等

2、实数的倒数、相反数和绝对值  


①相反数

实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。


②绝对值

在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。|a|≥0。0的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。


③倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。0没有倒数。


④数轴

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。


⑤估算


3、平方根、算数平方根和立方根


①算术平方根

一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。

性质:正数和零的算术平方根都只有一个,0的算术平方根是0。


②平方根

一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方求一个数a的平方根的运算,叫做开平方。注意 √a的双重非负性:√a≥0 ;   a≥0

③立方根

一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a 的立方根(或三次方根)。

表示方法:记作 √a

性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:- √a=√-a,这说明三次根号内的负号可以移到根号外面。


4、实数大小的比较


①实数比较大小

正数大于零,负数小于零,正数大于一切负数;

数轴上的两个点所表示的数,右边的总比左边的大;

两个负数,绝对值大的反而小。


②实数大小比较的几种常用方法

数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

求差比较:设a、b是实数

a-b>0↔a>b;

a-b=0↔a=b;

a-b<0↔a<b 。

求商比较法:设a、b是两正实数, 


绝对值比较法:设a、b是两负实数,则∣a∣>∣b∣↔a<b。

平方法:设a、b是两负实数,则 a2>b2↔a<b 。


5、算术平方根有关计算(二次根式)

含有二次根号“ √  ”;被开方数a必须是非负数。


性质:


③运算结果若含有“ √ ”形式,必须满足:

被开方数的因数是整数,因式是整式

被开方数中不含能开得尽方的因数或因式


6、实数的运算 

六种运算:加、减、乘、除、乘方  、开方。


实数的运算顺序

先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。


③运算律

加法交换律     a+b= b+a

加法结合律   (a+b)+c= a+( b+c )

乘法交换律      ab= ba   

乘法结合律     (ab)c = a( bc )

乘法对加法的分配律   a( b+c )=ab+ac


第三章  位置与坐标


1、确定位置

在平面内,确定物体的位置一般需要两个数据。


2、平面直角坐标系及有关概念


①平面直角坐标系

在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。


②坐标轴和象限

为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。


③点的坐标的概念

对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。


④不同位置的点的坐标的特征  

a、各象限内点的坐标的特征

点P(x,y)在第一象限→ x>0,y>0

点P(x,y)在第二象限 → x<0,y>0

点P(x,y)在第三象限 → x<0,y<0

点P(x,y)在第四象限 → x>0,y<0


b、坐标轴上的点的特征

点P(x,y)在x轴上  → y=0,x为任意实数

点P(x,y)在y轴上  → x=0,y为任意实数

点P(x,y)既在x轴上,又在y轴上→  x,y同时为零,即点P坐标为(0,0)即原点


c、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线(直线y=x)上 → x与y相等

点P(x,y)在第二、四象限夹角平分线上 → x与y互为相反数


d、和坐标轴平行的直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。


e、关于x轴、y轴或原点对称的点的坐标的特征

点P与点p’关于x轴对称 横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)

点P与点p’关于y轴对称 纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)

点P与点p’关于原点对称,横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)


f、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

点P(x,y)到x轴的距离等于 ∣y∣

点P(x,y)到y轴的距离等于 ∣x∣

点P(x,y)到原点的距离等于 √x2+y2


3、坐标变化与图形变化的规律

第四章  一次函数

1、函数

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。


2、自变量取值范围

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。


3、函数的三种表示法及其优缺点

关系式(解析)法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

图象法

用图象表示函数关系的方法叫做图象法。


4、由函数关系式画其图像的一般步骤

列表:列表给出自变量与函数的一些对应值。

描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。

连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。


5、正比例函数和一次函数

正比例函数和一次函数的概念

一般地,若两个变量x,y间的关系可以表示成y=kx+b (k,b为常数,k不等于 0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数y=kx+b中的b=0时(k为常数,k 不等于0),称y是x的正比例函数。

②一次函数的图像:

 所有一次函数的图像都是一条直线。


③一次函数、正比例函数图像的主要特征

一次函数y=kx+b的图像是经过点(0,b)的直线;

正比例函数y=kx的图像是经过原点(0,0)的直线。


④正比例函数的性质

一般地,正比例函数 有下列性质:

当k>0时,图像经过第一、三象限,y随x的增大而增大;

当k<0时,图像经过第二、四象限,y随x的增大而减小。


⑤一次函数的性质

一般地,一次函数 有下列性质:

当k>0时,y随x的增大而增大;

当k<0时,y随x的增大而减小。


⑥正比例函数和一次函数解析式的确定

确定一个正比例函数,就是要确定正比例函数定义式y=kx(k 不等于0)中的常数k。

确定一个一次函数,需要确定一次函数定义式y=kx+b(k 不等于0)中的常数k和b。解这类问题的一般方法是待定系数法.


⑦一次函数与一元一次方程的关系

任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k≠0)的形式.而一次函数解析式形式正是y=kx+b(k、b为常数,k≠0).当函数值为0时,即kx+b=0就与一元一次方程完全相同.


结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值.

从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.

第五章   二元一次方程组


1、二元一次方程

①二元一次方程

含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。


二元一次方程的解

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。


2、二元一次方程组

含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。


二元一次方程组的解

二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。


③二元一次方程组的解法

代入(消元)法

加减(消元)法


一次函数与二元一次方程(组)的关系:

一次函数与二元一次方程的关系:

直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解

一次函数与二元一次方程组的关系:

二元一次方程组 

         
的解可看作两个一次函数                              


和 的图象的交点。

当函数图象有交点时,说明相应的二元一次方程组有解;

当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。                                                               


第六章    数据的分析

1、刻画数据的集中趋势(平均水平)的量:平均数 、众数、中位数


2、平均数

平均数:一般地,对于n个数,我们把它们的和与n之商叫做这n个数的算术平均数,简称平均数。

加权平均数。 


3、众数

一组数据中出现次数最多的那个数据叫做这组数据的众数。


4、中位数

一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。


第七章  平行线的证明

1、平行线的性质

一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补.

也可以简单的说成:

两直线平行,同位角相等;

两直线平行,内错角相等;

两直线平行,同旁内角互补。


2、判定平行线
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
也可以简单说成:

同位角相等两直线平行
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.


其他两条可以简单说成:

内错角相等两直线平行

同旁内角相等两直线平行        


九年级上册知识点


第一章  特殊的平行四边形


一、平行四边形

1、平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。


2、平行四边形的性质

(1)平行四边形的对边平行且相等。(对边)

(2)平行四边形相邻的角互补,对角相等(对角)

(3)平行四边形的对角线互相平分。(对角线)

(4)平行四边形是中心对称图形,对称中心是对角线的交点。


常用点:

(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

(2)推论:夹在两条平行线间的平行线段相等。


3、平行四边形的判定

(1)定义:两组对边分别平行的四边形是平行四边形。(对边)

(2)定理1:两组对边分别相等的四边形是平行四边形。(对边)

(3)定理2:一组对边平行且相等的四边形是平行四边形。(对边)

(4)定理3:两组对角分别相等的四边形是平行四边形。(对角)

(5)定理4:对角线互相平分的四边形是平行四边形。(对角线)


4、两条平行线的距离

两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。 注意:平行线间的距离处处相等。


5、平行四边形的面积:  S平行四边形=底边长×高=ah


二、菱形

1、菱形的定义:有一组邻边相等的平行四边形叫做菱形

2、菱形的性质

(1)菱形的四条边相等,对边平行。 (边)

(2)菱形的相邻的角互补,对角相等。(对角)

(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。(对角线)

(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。

3、菱形的判定

(1)定义:有一组邻边相等的平行四边形是菱形。

(2)定理1:四边都相等的四边形是菱形。(边)

(3)定理2:对角线互相垂直的平行四边形是菱形。(对角线)

(4)定理3:对角线垂直且平分的四边形是菱形。(对角线)

4、菱形的面积:   S菱形=底边长×高=两条对角线乘积的一半


三、矩形

1、矩形的定义:有一个角是直角的平行四边形叫做矩形。

2、矩形的性质

(1)矩形的对边平行且相等。(对边)   

(2)矩形的四个角都是直角。(内角)

(3)矩形的对角线相等且互相平分。(对角线)

(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。


3、矩形的判定

(1)定义:有一个角是直角的平行四边形是矩形。

(2)定理1:有三个角是直角的四边形是矩形。(角)

(3)定理2:对角线相等的平行四边形是矩形。(对角线)

※推论:直角三角形斜边上的中线等于斜边的一半。

4、矩形的面积:S矩形=长×宽=ab


四、正方形

 1、正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。


2、正方形的性质

(1)正方形四条边都相等,对边平行。(边)

(2)正方形的四个角都是直角 (角)

(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(对角线)

(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。


3、正方形的判定

(1)定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。

(2)定理1:有一组邻边相等的矩形是正方形。

(3)定理2:对角线互相垂直的矩形是正方形。

(4)定理3:有一个角是直角的菱形是正方形。

(5)定理4:对角线相等的菱形是正方形。

(6)定理5:对角线垂直且相等的平行四边形是正方形。

判定一个四边形是正方形的主要依据是定义,途径有两种:

(1)先证它是矩形,再证它是菱形。 

(2)先证它是菱形,再证它是矩形。



第三章  概率的进一步认识


 频率与概率的含义 


在试验中,每个对象出现的频繁程度不同,我们称每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率,即

把刻画事件A发生的可能性大小的数值,称为事件A发生的概率。



 通过实验运用稳定的频率来估计某一时间的概率 


在进行试验的时候,当试验的次数很大时,某个事件发生的频率稳定在相应的概率附近。

我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的频率。


第四章 图形的相似

一、成比例线段
1、定义:
(1)、线段比:如果选用一个长度单位量得两条线段AB、CD的长度分别是m,n,那么这两条线段的比就是它们长度的比,即AB:CD=m:n,或者写成AB/CD=m/n.

(2)、成比例线段:四条线段a、b、c、d中,如果a与b的比等于c与d的比,即a/b=c/d,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段。
2、定理:如果a/b=c/d==m/n(b+d++n≠0),
那么(a+c+m)/(b+d++n)=a/b

二、平行线分线段成比例
1、两条直线被一组平行线所截,所得的对应线段成比例。
2、平行于三角形一边的直线与其他两边相交。截得的线段成比例。

三、相似多边形
定义:各角分别相等,各边成比例的两个多边形叫做相似多边形。相似多边形对应边的比叫做相似比。


四、探索三角形相似的条件
1、两角分别相等的两个三角形相似。
2、两边成比例且夹角相等的两个三角形相似。
3、三边成比例的两个三角形相似。
4、概念:一般地,点C把线段AB分成两条线段AC和BC,如果AC/AB=BC/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比。

五、相似三角形判定定理的证明

六、利用相似三角形测高
1、利用阳光下的影子
2、利用标杆
3、利用镜子的反射

七、相似三角形的性质
1、相似三角形对应高的比、对应角平分线的比、对应中线的比等于相似比。
2、相似三角形的周长比等于相似比,面积比等于相似比的平方。

八、图形的位似
定义:一般地,如果两个相似多边形任意一组对应顶点P、P1所在的直线都 经过同一个点O,且有OP1=k*OP(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心。实际上,k就是这两个相似多边形的相似比。


第五章 投影与视图


A)三视图 
• 主视图——从正面看到的图 左视图——从左面看到的图 俯视图——从上面看到的图 
• 画物体的三视图时,要符合如下原则:大小:长对正,高平齐,宽相等.
• 虚实:在画图时,看的见部分的轮廓通常画成实线,看不见部分的轮廓线通常画成虚线. 

B)投影 
• 物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象. 
• 太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。 
• 在同一时刻,物体高度与影子长度成比例. 
• 物体的三视图实际上就是该物体在某一平行光线(垂直于投影面的平行光线)下的平行投影. 
• 探照灯,手电筒,路灯,和台灯的光线可以看成是从一点出发的光线,像这样的光线所形成的投影称
为中心投影
• 皮影和手影都是在灯光照射下形成的影子.它们是中心投影。

C)视点、视线、盲区的定义以及在生活中的应用。 
.  眼睛所在的位置称为视点,
.  由视点发出的光线称为视线,
.  眼睛看不到的地方称为盲区


第六章  反比例函数

一、反比例函数的概念

一般地如果两个变量x,y之间的关系可以表示的形式,那么称y是x的反比例函数。(反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。)


二、反比例函数的图象


反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。


三、反比例函数的性质



四、反比例函数解析式的确定

确定反比例函数解析式的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。


五、反比例函数中反比例系数的几何意义

过反比例函数图像上任一点P(x,y)作x轴、y轴的垂线PM,PN,垂足分别是M、N,则所得的矩形PMON的面积

知识框架图


第一章:特殊平行四边形---知识体系

第二章:一元二次方程---知识体系

第三章:进一步认识概率---知识体系





第五章:投影与视图---知识体系


第六章:反比例函数---知识体系


觉得本文不错的话,请在文末右下角【点赞】支持,点亮【在看】,转发【分享】哟,教育路上,我们与您并肩同行。


初中福利来了↓↓↓


重磅!紧急通知:男女教师满25年教龄可直接评聘高级教师,满20年教龄可直接评聘一级教师!

重磅资料|限时免费领!2020秋季初中数学全套优质课课例精编

昨晚,家长群里的这段话火了:教育好自己的孩子,是你最重要的事业!(家长必读)

重磅福利!2020秋季初中全科全版本最新备课资料!限时免费领!


看更多走心好文章
请长按下方图片
识别二维码 关注初中教师园地


长按·识别二维码·加关注

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存