查看原文
其他

吴恩达Deeplearning.ai国庆节上新:生成对抗网络(GAN)专项课程

来自 | 机器之心   作者 | 蛋酱

Coursera 刚刚上新了 GAN 的专项课程,或许在这个国庆假期,你应该学习一波了。



生成对抗网络(Generative Adversarial Network,GAN)是当前功能最强大的机器学习模型之一,其能够生成逼真的图像、视频和语音输出结果。基于 GAN 的应用十分广泛,比如防御对抗攻击和数据匿名化来保护隐私,以提升网络安全性,再比如生成新图像,为黑白图像着色、提高图像分辨率、2D 图像转 3D 等技术。

随着算力的增强,GAN 的普及程度和功能也不断提升,开启了许多新的方向:比如生成大量数据用来训练模型,让无监督模型生成更加清晰、准确的输出图像,同时也为相近研究领域提供了对抗学习、对抗样本、模型鲁棒性等方面的启示。

近日,DeepLearning.AI 推出了《生成对抗网络(GAN)专项课程》,系统介绍了使用 GAN 生成图像的理论及方法。此外还包括机器学习偏见、隐私保护等社会影响话题的讨论。


这门课程适用于对机器学习感兴趣并希望了解 GAN 的工作原理的软件工程师、学生和研究者。专项课程内容尽可能做到通俗易懂,让进入课程的人都真正理解 GAN 并学会使用。

但在进入这门课程之前,学习者应该具备关于深度学习、卷积神经网络的知识,具备一定的 Python 技能和深度学习框架(TensorFlow、Keras、PyTorch)的使用经验,且精通微积分、线性代数、统计学。

   课程内容

本次专项课程总共分为三节:

课程 1:Build Basic Generative Adversarial Networks (GANs)

这一节的内容包括 GAN 的基本知识、使用 PyTorch 构建最基本的 GAN 模型,以及使用卷基层构建 DCGAN 来处理图像、使用损失函数解决梯度消失问题,并学习如何控制 GAN 和构建有条件 GAN。

课程 2:Build Better Generative Adversarial Networks (GANs)

这一节将介绍 GAN 模型现存的挑战,通过对比不同的生成模型,使用 Fréchet Inception Distance(FID)来评估 GAN 的保真度和多样性,辨别偏见的来源、在 GAN 中检测偏见的方法,以及学习 StyleGAN 的相关技术。

课程 3:Apply Generative Adversarial Networks (GANs)

这一节将学习如何使用 GAN 进行数据增强和隐私保护,并熟悉 GAN 的更多应用类型,以及构建 Pix2Pix、CycleGAN 以实现图像转换功能。

   讲师介绍



这门课程的授课讲师是吴恩达的博士生 Sharon Zhou,她的研究领域涵盖医学、气候和更广泛的社会公益领域。Sharon Zhou2015 年毕业于哈佛大学,获得古典文学和计算机科学联合学位,并在谷歌等多家公司担任机器学习方面的产品经理职位。

与其他专项课程一样,这门课程也包括实践项目,需要完成一些项目才能结束专项课程并获得证书。如果专项课程中包括单独的实践项目课程,则需要在开始之前完成其他所有课程。只想阅读和查看课程内容的话,该课程提供免费旁听的机会。

—完—
为您推荐干货 | 算法工程师超实用技术路线图那些轻轻拍了拍Attention的后浪们吴恩达推荐笔记:22 张图总结深度学习全部知识周博磊自述:一个神经元的价值和一个神经病的坚持你一定从未看过如此通俗易懂的YOLO系列解读 (下)

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存