多盯别人几眼,你就是这条街最有领导力的仔丨CellPress论文速递
“盯——” 在人群中多盯别人几眼可以证明自己的领导地位吗?答案是:当然可以。
加拿大及意大利的研究团队结合计算机视觉方法、分类学、机器学习等技术开发出了一种全新的研究方法,对文章开头的问题给出了答案——在现实世界的群组互动中,社交凝视行为真的能够说明谁才是领导者。这项研究成果于5月28日发表在Cell Press细胞出版社旗下综合性新刊iScience上。
(长按下方二维码阅读全文)
人们普遍认为凝视行为能够反应领导权,常规思维又将长时间向领导者的凝视、领导者之间时间更长的相互凝视与领导权联系在一起【1】。但目前为止这方面的研究都集中在基于计算机的范例,关于领导权与社交凝视行为之间真正关系的研究证据也十分有限【2,3,4】。
这项研究发现,无论在民主型或专制型领导风格下,且无论时间压力高低(对被试者做决定的时间限制),领导权与凝视行为的关系是近乎一致的——凝视,即领导权的标志。
“谁瞅谁(who looked at whom)”实验中
参与者及摄像机位置设置
研究者们对16个由陌生人组成的小组进行了“谁瞅谁(who looked at whom)”实验,每组4人坐在距离相等的椅子上,同时周围有多个摄像机同时捕捉他们的视觉行为,最后利用一种技术自动逐帧计算VFOA(Visual Focus of Attention)。每组都有1名事先设定好的领导者,每个小组需要在不同时间限制下完成任务。
研究者们同时对各小组设定了不同的领导风格和时间压力的正交分布。通常认为民主型领导风格在低时间压力下更有效,而专制型领导风格在高时间压力下更有效【5,6】。基于上述理论,实验分别设置有2种不同的"high fit"及"low fit"组,即“民主型-低时间压力”及“专制型-高时间压力”为"high fit",反之为"low it"。
基于领导风格/时间压力的"high fit"及"low fit"分组
结合每位参与者的VFOA数据,研究者们建立了基于凝视的互动动态分析(gaze-based interaction dynamics),并基于社交凝视行为研究常用的三个维度建立了“多方凝视 (multi-party gaze)”的分类方法【7,8,9,10,11】。三个维度分别为“参与(participation)”、“威望(prestige)”、“相互接触(mutual engagement)”【6】,其本质为每个对象“看”、“被看”、“互相看”的时长,在这些维度下,研究者们提出了8种多方凝视属性以全面地对群体互动中地凝视行为进行分析。
接着,通过训练线性支持向量机 (Support Vector Machine, SVM), 基于提取出的多方凝视属性值,进行领导者和服从者的区分,进而得到了一个混淆矩阵。研究者们还对各属性的F-score进行了计算,F-score越高,该属性则越能区分领导者和服从者。总体来说,F-scores反映了领导者更多是被看而不是看向其他人。
左:多方凝视 (multi-party gaze)分类
右:领导者/服从者区分混淆矩阵
该研究首次全面分析了自然群体互动中领导权与社交凝视行为的关系。结合此前对身体动作(body movements)【12,13,14】、副语言行为(paralinguistic behaviors)【15,16,17】的研究,这些都说明了非语言交际(non-verbal cues)对于领导权认同的重要性。这项研究中各小组中分配有一名领导者,因此关于现有发现是否能够(或以何种程度)推广至突发领导权(emergent leadership)的研究【18】,这一实验设定显得尤为重要。研究团队也对研究方法的拓展表示期待,作者强调非语言交际与领导权认同的研究发现将会激发从商业【19,20】到政治【21】等各个领域的新的研究方向。
相关论文信息
论文原文刊载于Cell Press细胞出版社旗下期刊iScience上,点击“阅读原文”或扫描下方二维码查看论文
论文标题:
Tracking the Leader: Gaze Behavior in Group Interactions
论文网址:
https://www.cell.com/iscience/fulltext/S2589-0042(19)30172-5
DOI:
https://doi.org/10.1016/j.isci.2019.05.035
参考文献 (上下滑动查看)
1. Carney, D.R., Hall, J.A., and LeBeau, L.S. (2005). Beliefs about the nonverbal expression of social power. J. Nonverbal. Behav. 29, 105–123.
2. Capozzi, F., and Ristic, J. (2018). How attention gates social interactions. Ann. N. Y. Acad. Sci.1426, 179–198.
3. Koski, J.E., Xie, H., and Olson, I.R. (2015).Understanding social hierarchies: the neural andpsychological foundations of status perception.Soc. Neurosci. 10, 527–550.
4. Risko, E.F., Richardson, D.C., and Kingstone, A.(2016). Breaking the fourth wall of cognitive science: real-world social attention and the dual function of gaze. Curr. Dir. Psychol. Sci. 25, 70-74.
5. Fiedler, F.E. (2006). The contingency model: a theory of leadership effectiveness. In Small Groups: Key Readings, J.M. Levine and R.L. Moreland, eds. (Psychology Press), pp. 369–382.
6. Pierro, A., Mannetti, L., De Grada, E., Livi, S., and Kruglanski, A.W. (2003). Autocracy bias in informal groups under need for closure. Personal. Soc. Psychol. Bull. 29, 405–417.
7. Capozzi, F., and Ristic, J. (2018). How attention gates social interactions. Ann. N. Y. Acad. Sci. 1426, 179–198.
8. Emery, N.J. (2000). The eyes have it: the neuroethology, function and evolution of social gaze. Neurosci. Biobehav. Rev. 24, 581–604.
9. Jording, M., Hartz, A., Bente, G., and Vogeley, K. (2018). The ‘‘social gaze space’’: gaze-based communication in triadic interactions. Front. Psychol. 9, 226.
10. Kleinke, C.L. (1986). Gaze and eye contact: a research review. Psychol. Bull. 100, 78–100.
11. Pfeiffer, U.J., Vogeley, K., and Schilbach, L. (2013). From gaze cueing to dual eye-tracking: novel approaches to investigate the neural correlates of gaze in social interaction. Neurosci. Biobehav. Rev. 37, 2516–2528.
12. Badino, L., D’Ausilio, A., Glowinski, D., Camurri, A., and Fadiga, L. (2014). Sensorimotor communication in professional quartets. Neuropsychologia 55, 98–104.
13. Chang, A., Livingstone, S.R., Bosnyak, D.J., and Trainor, L.J. (2017). Body sway reflects leadership in joint music performance. Proc. Natl. Acad. Sci. USA 114, E4134–E4141.
14. D’Ausilio, A., Badino, L., Li, Y., Tokay, S., Craighero, L., Canto, R., Aloimonos, Y., and Fadiga, L. (2012). Leadership in orchestra emerges from the causal relationships of movement kinematics. PLoS One 7, e35757.
15. Gatica-Perez, D. (2009). Automatic nonverbal analysis of social interaction in small groups: a review. Image Vis. Comput. 27, 1775–1787.
16. Hall, J.A., Coats, E.J., and LeBeau, L.S. (2005). Nonverbal behavior and the vertical dimension of social relations. Psychol. Bull. 131, 898–924.
17. Schmid Mast, M. (2002). Dominance as expressed and inferred through speaking time: a meta-analysis. Hum. Commun. Res. 28, 420–450.
18. Jiang, J., Chen, C., Dai, B., Shi, G., Ding, G., Liu, L., and Lu, C. (2015). Leader emergence through interpersonal neural synchronization. Proc. Natl. Acad. Sci. USA 112, 4274–4279.
19. Beyan, C., Capozzi, F., Becchio, C., and Murino, V. (2018). Prediction of the leadership style of an emergent leader using audio and visual nonverbal features. IEEE Trans. Multimed. 20, 441–456.
20. Beyan, C., Carissimi, N., Capozzi, F., Vascon, S., Bustreo, M., Pierro, A., Becchio, C., and Murino, V. (2016). Detecting emergent leader in a meeting environment using nonverbal visual features only. In Proceedings of the 18th ACM International Conference on Multimodal Interaction (ACM), pp. 317–324.
21. Bazzani, L., Cristani, M., Paggetti, G., Tosato, D., Menegaz, G., and Murino, V. (2012). Analyzing groups: a social signaling perspective. In Video Analytics for Business Intelligence. Studies in Computational Intelligence, C. Shan, F. Porikli, T. Xiang, and S. Gong, eds. (Springer), pp. 271–305.
推荐阅读
点击“阅读原文”,查看论文原文