6种常见的工业数据分析场景
The following article is from 寄云科技 Author 工业互联网服务商
成功的制造取决于企业不断寻找简化运营的新方法。过去,这意味着要花几个月的时间检查每个流程,测试、再测试创新的想法,最后实施变更。但是,这种过时的思维模式会使制造商在获得机会进行改进之前就被打败了。那么,如何才能更快、更有效地改善制造运营呢?通过提供更具针对性和可操作性的见解,数据分析可以简化制造运营,从而帮助企业持续优化生产线。以下是在制造业中使用数据分析的六种场景,它们可以显著改善整个运营!
从被动式到主动式维修
制造商遇到的最大问题之一是进入低效运转的境况。虽然主观上他们希望构建高效的制造链,但由于安装不当、使用不当或仅缺乏停机时间协调,各种不同的因素都可能会成为降低生产线整体效率中的关键。
通过将现有的物联网系统与强大的制造业预测分析相结合,企业可以实时洞察其生产线在微观和宏观上的运行状况。追踪单台机器的停机时间如何影响整个制造链,或者探索不同的配置如何提高整体效率,这不是“痴人说梦”,而是必须要做到的。生成可操作的数据以使企业在整个制造过程中实现真正的改进,是将分析应用于制造业的主要优势。
每个制造商都知道他们不仅在为当前已有的订单生产产品,而且还在为不久的将来可能出现的需求订单生产产品。需求预测很重要,因为它们能够指导生产链,如果预测失误,可能产生“一边是强劲的销售量”,而“另一边却是工厂缺乏大量的相应配件库存,无法满足需求”。对于大多数公司而言,预测是基于前几年的历史数据价值,而不是基于更具可行性的前瞻性数据。但是,制造商可以将现有数据与预测分析相结合,以更精确地预测购买趋势。这些预测性见解不仅基于先前的销售,还基于流程以及生产线的运行状况,从而可以更明智地进行风险管理并减少生产浪费。
虚拟量测依赖于完善的物联网系统及强大的数据接入、存储和分析等能力,以往囿于技术水平虚拟量测只能基于有限的统计分析手段,而现在有了大数据、物联网等先进技术的支持,基于大数据分析的虚拟量测已经成为现实。
制造过程中另一个经常被忽视的方面是仓储。一旦产品准备好运输后,必须先放入仓库,然后再出发前往目的地。在这一阶段,可谓是分秒必争。尤其是在这个日益接受“刚刚好”和零库存模型的世界中。
管理仓库可不是简单地为等待运输的产品寻找空间。建立有效的仓储结构,更好的产品流程管理和最有效的补货程序可以改善运营效率实现盈利。先进的分析功能可以让企业更容易领会改善库存的方法进而更好地管理仓库。
将您的制造KPI和流程带入21世纪可能并不复杂,最主要的通过整合强大的分析和可视化工具,企业可以对生产线的运作方式以及进一步的精简方式有更深入的了解。
(欢迎大家加入数据工匠知识星球获取更多资讯。)
联系我们
扫描二维码关注我们
微信:DaasCai
邮箱:ccjiu@163.com
QQ:3365722008
热门文章
我们的使命:发展数据治理行业、普及数据治理知识、改变企业数据管理现状、提高企业数据质量、推动企业走进大数据时代。
我们的愿景:打造数据治理专家、数据治理平台、数据治理生态圈。
我们的价值观:凝聚行业力量、打造数据治理全链条平台、改变数据治理生态圈。
了解更多精彩内容
长按,识别二维码,关注我们吧!
数据工匠俱乐部
微信号:zgsjgjjlb
专注数据治理,推动大数据发展。