其他
详解数据治理相关的7个术语和名词
The following article is from 大数据DT Author 罗小江 石秀峰
导读:本文介绍数据治理有关的名词和概念。当然,与数据治理相关的概念非常多,以下仅罗列几个常见的。
作者:用友平台与数据智能团队
来源:大数据DT(ID:hzdashuju)
3大特性:高价值性、高共享性、相对稳定性。 4个超越:超越业务,超越部门,超越系统,超越技术。
第一,业务交易过程中产生的数据,例如计划单、销售单、生产单、采购单等,这类数据多数是手动生成的。 第二,系统产生的数据,包括硬件运行状况、软件运行状况、资源消耗状况、应用使用状况、接口调用状况、服务健康状况等。 第三,自动化设备所产生的数据,如各类物联网设备的运行数据、生产采集数据等。
数据仓库是对企业数据的汇聚和集成,数据仓库内的数据来源于不同的业务处理系统,包含主数据和业务数据。数据仓库的作用就是帮助我们利用这些宝贵的数据做出最明智的商业决策。 数据仓库支持多维分析。多维分析通过把一个实体的属性定义成维度,使用户能方便地从多个维度汇总、计算数据,增强了用户的数据分析处理能力,而通过对不同维度数据的比较和分析,用户的数据处理能力得到进一步增强。 数据仓库是数据挖掘技术的关键和基础。数据挖掘技术是在已有数据的基础上,帮助用户理解现有的信息,并对未来的企业状况做出预测。在数据仓库的基础上进行数据挖掘,可以对整个企业的发展状况和未来前景做出较为完整、合理、准确的分析和预测。
本文摘编自《一本书讲透数据治理:战略、方法、工具与实践》,经出版方授权发布。(ISBN:9787111694489)
(欢迎大家加入数据工匠知识星球获取更多资讯。)
联系我们
扫描二维码关注我们
微信:SZH9543邮箱:ccjiu@163.comQQ:2286075659热门文章
我们的使命:发展数据治理行业、普及数据治理知识、改变企业数据管理现状、提高企业数据质量、推动企业走进大数据时代。
我们的愿景:打造数据治理专家、数据治理平台、数据治理生态圈。
我们的价值观:凝聚行业力量、打造数据治理全链条平台、改变数据治理生态圈。
了解更多精彩内容
长按,识别二维码,关注我们吧!
数据工匠俱乐部
微信号:zgsjgjjlb
专注数据治理,推动大数据发展。