软件应用 | Pandas中实现聚合统计,有几种方法?
The following article is from 小数志 Author luanhz
导读
Pandas是当前Python数据分析中最为重要的工具,其提供了功能强大且灵活多样的API,可以满足使用者在数据分析和处理中的多种选择和实现方式。今天本文以Pandas中实现分组计数这个最基础的聚合统计功能为例,分享多种实现方案,最后一种应该算是一个骚操作了……
本文转载自公众号小数志
当然,以上实现其实仅适用于计数统计这种特定需求,对于其他的聚合统计是不能满足的。
分组后对指定列聚合,在这种形式中依据country分组后只提取name一列,相当于每个country下对应了一个由多个name组成的series,而后的count即为对这个series进行count。
分组后直接聚合,然后再提取指定列。此时,依据country分组后不限定特定列,而是直接加聚合函数count,此时相当于对列都进行count,此时得到的仍然是一个dataframe,而后再从这个dataframe中提取对特定列的计数结果。
值得指出,在此例中country以外的其他列实际上也是只有name一列,但与第一种形式其实也是不同的,具体在于未加提取name列之前,虽然也是只有name一列,但却还是一个dataframe:
agg内接收聚合函数或聚合函数列表。具体实现形式也分为两种,与前面groupby直接+聚合函数的用法类似。实际上,该种用法其实与groupby直接+聚合函数极为类似。
agg内接收聚合函数字典,其中key为列名,value为聚合函数或函数列表,可实现同时对多个不同列实现不同聚合统计。这里字典的key是要聚合的name字段,字典的value即为要用的聚合函数count,当然也可以是包含count的列表的形式。用字典传入聚合函数的形式下,统计结果都是一个dataframe,更进一步的说当传入字典的value是聚合函数列表时,结果中dataframe的列名是一个二级列名。
agg内接收新列名+元组,实现对指定列聚合并重命名。对于聚合函数不是特别复杂而又希望能同时完成聚合列的重命名时,可以选用此种方式,具体传参形式实际上采用了python中可变字典参数**kwargs的用法,其中字典参数中的key是新列名,value是一个元组的形式,包括聚合字段列名和聚合函数。
如果说上述实现方式都还是pandas里中规中矩的聚合统计,那么这一种方式则是不是该算是一种骚操作?实际上,这是应用了pandas中apply的强大功能,具体可参考历史推文Pandas中的这3个函数,没想到竟成了我数据处理的主力。
而后,groupby后面接的apply函数,实质上即为对每个分组下的子dataframe进行聚合,具体使用何种聚合方式则就看apply中传入何种参数了!
本文针对一个最为基础的聚合统计场景,介绍pandas中4类不同的实现方案,其中第一种value_counts不具有一般性,仅对分组计数需求适用;第二种groupby+聚合函数,是最为简单和基础的聚合统计,仅适用于单一聚合函数的需求;第三种groupby+agg,具有灵活多样的传参方式,是功能最为强大的聚合统计方案;而第四种groupby+apply则属于是灵活应用了apply的重载功能,可以用于完成一些特定的统计需求。
最后,虽然本文以简单的分组计数作为讲解案例,但所提到的方法其实是能够代表pandas中的各种聚合统计需求。
点击搜索你感兴趣的内容吧
往期推荐
数据Seminar
这里是大数据、分析技术与学术研究的三叉路口
欢迎扫描👇二维码添加关注