其他
science 级别的组合图表函数升级了
有朋友层问询是否可以升级这个图表,当然可以,晚饭小憩一会,看着日落,为大家带来这次升级。
这是之前写的函数
env.st = read.csv("./env.st.csv",row.names = 1)
env.st
report = read.csv("./report.csv",row.names = 1)
source("./plot_mantel_cor.R")
p = plot_mantel_cor(env = env.st,report = report,title = c("A") )
p
下面是升级后的组合图表
这是新的函数
source("./plot_mantel_cor_3_more.R")
当单个矩阵的时候和之前一样
report = read.csv("./report.csv",row.names = 1)
p = plot_mantel_cor_3_more(env = env.st,report = report,title = c("A") )
p
两个矩阵和因子做相关
这里我模拟了一个新的列,代表新的矩阵同环境因子做相关。
report = read.csv("./report.csv",row.names = 1)
report$aa = report$R
# report$bb = report$R
p = plot_mantel_cor_3_more(env = env.st,report = report,title = c("A","B") )
p
三个矩阵和因子做相关
无论是两个还是三个或者四个矩阵同因子做相关,只需要在report后面多添加几列就够了,名字随便命名。我在函数中都做了修改。
report = read.csv("./report.csv",row.names = 1)
report$aa = report$R
report$bb = report$R
p = plot_mantel_cor_3_more(env = env.st,report = report,title = c("A","B","C") )
p
四个矩阵和因子做相关
report = read.csv("./report.csv",row.names = 1)
report$aa = report$R
report$bb = report$R
report$cc = report$R
p = plot_mantel_cor_3_more(env = env.st,report = report,title = c("A","B","C","D") )
p
下面附函数
如果大家有时间,可以添加方向代码,让这个图形可以随意调换方向。图例可以精修一下。
######环境变量之间的关系··································································
# title = c("A","B","c")
plot_mantel_cor_3_more = function(env = env.st,report = report,title = "16S_microbiology"){
colnames(report) = c(colnames(report)[1],paste("R",1:(dim(report) [2] - 1),sep = ""))
report
library(ggcorrplot)
library(igraph)
library(psych)
occor = corr.test(env.st,use="pairwise",method="spearman",adjust="fdr",alpha=.05)
occor.r = occor$r # 取相关性矩阵R值
occor.p = occor$p # 取相关性矩阵p值
occor.r[occor.p>0.05] = 0
# p = ggcorrplot(occor.r,p.mat = occor.p, method = "circle",lab = TRUE,insig = "blank",outline.color = "white",
# ggtheme = ggplot2::theme_bw())
#
# p
#
###############
# write.csv(occor.r,"./occor.r.csv",quote = F)
library(reshape2)
occor.r2 = occor.r[lower.tri(occor.r, diag = TRUE)]
# occor.r2 = occor.r[lower.tri(occor.r, diag = TRUE)]
length(colnames(occor.r))
# a = rep(0,length(occor.r2))
# i = 1
### 构造环境变量三角矩阵图
## dd:构建三交矩阵横坐标
cc = rep(length(colnames(occor.r)),(length(colnames(occor.r))))
for (i in 1:(length(colnames(occor.r))-1)) {
ee = rep(length(colnames(occor.r))-i,(length(colnames(occor.r))-i))
dd = c(cc,ee)
cc = dd
}
dd = (length(colnames(occor.r))+1) - dd
# cc = rep(1:length(colnames(occor.r)))
# for (i in 1:(length(colnames(occor.r))-1)) {
# ee = c(1:(length(colnames(occor.r))-i))
# rr = c(cc,ee)
#
# cc = rr
# }
#
# rr
##ww:构建三角矩阵纵坐标
gg = rep(length(colnames(occor.r)):1)
for (i in 1:(length(colnames(occor.r))-1)) {
ee = c((length(colnames(occor.r))-i):1)
ww = c(gg,ee)
gg = ww
}
ww
##构造变量对应关系
wwt =data.frame(x = dd,y = ww)
##提取相关值大小,这是下三角矩阵转化
# xa = melt(occor.r)
wwt$mantelR = occor.r2
wwt
### 下面添加群落和环境因子的相关结果
##构造每个环境因子的坐标
x = c(1:(length(colnames(occor.r))) )
y = c((length(colnames(occor.r))+1) :2)
data2 = data.frame(x = x,y = y)
data2 = cbind(data2,as.data.frame(report[2:dim(report)[2]]^2*500))
data2
axa = as.matrix(report[2:dim(report)[2]])
axa[axa>0] <- 1
axa[axa<0] <- -1
axa[axa==0] <- 0
colnames(axa) = paste(colnames(axa),"d",sep = "")
data2 = cbind(data2,axa)
data2
data2$label = colnames(env.st)
data2
p = ggplot() +
geom_tile(aes(x = x, y = y),wwt,fill=NA,color='gray',size=0.5)+
geom_point(aes(x = x, y = y,size=mantelR,fill=mantelR),wwt, shape=22,color='white')+
scale_size(range = c(1, 8))+
scale_fill_distiller(palette="RdYlBu")
p
##如果三角之外只有一个点
if (dim(report) [2] == 2) {
p = p+
geom_curve(aes(x = max(wwt$x)*3/4, y = max(wwt$y)*3/4, xend = x, yend = y,group = as.factor(data2$R1d),color = as.factor(data2$R1d)),curvature = 0.2,data2,size = data2$R1) +
geom_point(aes(x = x, y = y),pch = 21,size =4,data2,color = "black",fill = "#FFF5EB")+
geom_point(aes(x = max(wwt$x)*3/4, y = max(wwt$y)*3/4),pch = 21,size = 6,color = "black",fill = "#FEE6CE")
}
## 有两个群落
if (dim(report) [2] == 3) {
p = p+
geom_curve(aes(x = max(wwt$x)*2/3, y = max(wwt$y), xend = x, yend = y,group = as.factor(data2$R1d),color = as.factor(data2$R1d)),curvature = 0.2,data2,size = data2$R1) +
geom_point(aes(x = x, y = y),pch = 21,size =4,data2,color = "black",fill = "#FFF5EB")+
geom_point(aes(x = max(wwt$x)*2/3, y = max(wwt$y)),pch = 21,size = 6,color = "black",fill = "#FEE6CE")
p = p+
geom_curve(aes(x = max(wwt$x)*4.2/5, y = max(wwt$y)*3/4, xend = x, yend = y,group = as.factor(data2$R2d),color = as.factor(data2$R2d)),curvature = 0.2,data2,size = data2$R2) +
geom_point(aes(x = x, y = y),pch = 21,size =4,data2,color = "black",fill = "#FFF5EB")+
geom_point(aes(x = max(wwt$x)*4.2/5, y = max(wwt$y)*3/4),pch = 21,size = 6,color = "black",fill = "#FEE6CE")
}
## 有三个群落
if (dim(report) [2] == 4) {
p = p+
geom_curve(aes(x = max(wwt$x)*1.5/3, y = max(wwt$y*1.5), xend = x, yend = y,group = as.factor(data2$R1d),color = as.factor(data2$R1d)),curvature = 0.2,data2,size = data2$R1) +
geom_point(aes(x = x, y = y),pch = 21,size =4,data2,color = "black",fill = "#FFF5EB")+
geom_point(aes(x = max(wwt$x)*1.5/3, y = max(wwt$y*1.5)),pch = 21,size = 6,color = "black",fill = "#FEE6CE")
p
p = p+
geom_curve(aes(x = max(wwt$x)*3.5/4, y = max(wwt$y), xend = x, yend = y,group = as.factor(data2$R2d),color = as.factor(data2$R2d)),curvature = 0.2,data2,size = data2$R2) +
geom_point(aes(x = x, y = y),pch = 21,size =4,data2,color = "black",fill = "#FFF5EB")+
geom_point(aes(x = max(wwt$x)*3.5/4, y = max(wwt$y)),pch = 21,size = 6,color = "black",fill = "#FEE6CE")
p = p+
geom_curve(aes(x = max(wwt$x)*4.8/5, y = max(wwt$y)*2/4, xend = x, yend = y,group = as.factor(data2$R3d),color = as.factor(data2$R3d)),curvature = 0.2,data2,size = data2$R3) +
geom_point(aes(x = x, y = y),pch = 21,size =4,data2,color = "black",fill = "#FFF5EB")+
geom_point(aes(x = max(wwt$x)*4.8/5, y = max(wwt$y)*2/4),pch = 21,size = 6,color = "black",fill = "#FEE6CE")
}
## 有4个群落
if (dim(report) [2] == 5) {
p = p+
geom_curve(aes(x = 2, y = max(wwt$y*1.5), xend = x, yend = y,group = as.factor(data2$R1d),color = as.factor(data2$R1d)),curvature = 0.2,data2,size = data2$R1) +
geom_point(aes(x = x, y = y),pch = 21,size =4,data2,color = "black",fill = "#FFF5EB")+
geom_point(aes(x = 2, y = max(wwt$y*1.5)),pch = 21,size = 6,color = "black",fill = "#FEE6CE")
p
p = p+
geom_curve(aes(x = 5, y = max(wwt$y*1.4), xend = x, yend = y,group = as.factor(data2$R2d),color = as.factor(data2$R2d)),curvature = 0.2,data2,size = data2$R2) +
geom_point(aes(x = x, y = y),pch = 21,size =4,data2,color = "black",fill = "#FFF5EB")+
geom_point(aes(x = 5, y = max(wwt$y*1.4)),pch = 21,size = 6,color = "black",fill = "#FEE6CE")
p
p = p+
geom_curve(aes(x = max(wwt$x)*3.5/4, y = max(wwt$y), xend = x, yend = y,group = as.factor(data2$R3d),color = as.factor(data2$R3d)),curvature = 0.2,data2,size = data2$R3) +
geom_point(aes(x = x, y = y),pch = 21,size =4,data2,color = "black",fill = "#FFF5EB")+
geom_point(aes(x = max(wwt$x)*3.5/4, y = max(wwt$y)),pch = 21,size = 6,color = "black",fill = "#FEE6CE")
p
p = p+
geom_curve(aes(x = max(wwt$x)*4.8/5, y = max(wwt$y)*2/4, xend = x, yend = y,group = as.factor(data2$R4d),color = as.factor(data2$R4d)),curvature = 0.2,data2,size = data2$R4) +
geom_point(aes(x = x, y = y),pch = 21,size =4,data2,color = "black",fill = "#FFF5EB")+
geom_point(aes(x = max(wwt$x)*4.8/5, y = max(wwt$y)*2/4),pch = 21,size = 6,color = "black",fill = "#FEE6CE")
p
}
p
### 添加环境因子添加标签
p = p + geom_text(aes(x = x, y = 0,label= colnames(env.st)),size=4,data2) +
geom_text(aes(x = 0, y = y-1,label= colnames(env.st)),size=4,data2)
p = p + geom_text(aes(x = x+0.5, y = y+0.5,label=data2$label),size=4,data2)
p
##添加群落矩阵标签
if (dim(report) [2] == 2) {
p = p +
geom_text(aes(x = max(wwt$x)*3/4+1, y = max(wwt$y)*3/4+1,label= title),size = 6)
p
}
# title = c("A","B","c")
if (dim(report) [2] == 3) {
p = p +
geom_text(aes(x = max(wwt$x)*2/3 +1, y = max(wwt$y),label= title[1]),size = 6) +
geom_text(aes(x = max(wwt$x)*4.2/5 +1, y = max(wwt$y)*3/4,label= title[2]),size = 6)
p
}
if (dim(report) [2] == 4) {
p = p +
geom_text(aes(x = max(wwt$x)*1.5/3+1, y = max(wwt$y*1.5)+1,label= title[1]),size = 6) +
geom_text(aes(x = max(wwt$x)*3.5/4+1, y = max(wwt$y)+1,label= title[2]),size = 6) +
geom_text(aes(x = max(wwt$x)*4.8/5+1, y = max(wwt$y)*2/4+1,label= title[3]),size = 6)
p
}
#四个群落
if (dim(report) [2] == 5) {
p = p +
geom_text(aes(x = 2+1, y = max(wwt$y*1.5)+1,label= title[1]),size = 6) +
geom_text(aes(x = 5+1, y = max(wwt$y*1.4)+1,label= title[2]),size = 6) +
geom_text(aes(x = max(wwt$x)*3.5/4+1, y = max(wwt$y)+1,label= title[3]),size = 6) +
geom_text(aes(x = max(wwt$x)*4.8/5+1, y = max(wwt$y)*2/4+1,label= title[4]),size = 6)
p
}
### 修改主题
p = p +theme_void()#横纵坐标群去掉
p
}
示例数据和代码可以在微生信生物群中得到。添加小编微信,带你入群。以后便随时得到一些有用的脚本。
或者后台留言,我会准备一个网盘链接,发送给你。
历史目录
R语言分析技术
扩增子专题
基于phyloseq的微生物群落分析
代谢组专题
当科研遇见python
科学知识图谱
杂谈
欢迎加入微生信生物讨论群,扫描下方二维码添加小编微信,小编带你入伙啦,大牛如云,让交流变得简单。
哦对了,还记得之前我写了一个R包吗?好像只有一个功能
该整理代码封个R包了-来自复兴号的学习笔记
我刚才把这个函数和测试数据集放到easyMicrobiome包中了,额,还没有push·······
总之先放出代码,空了push到github,大家更方便安装指定测试。
library(easyMicrobiome)
data("env.st")
data("report")
#one
p = plot_mantel_cor_3_more(env = env.st,report = report,title = c("A") )
p
#two
report$aa = report$R
# report$bb = report$R
p = plot_mantel_cor_3_more(env = env.st,report = report,title = c("A","B") )
p
#three
report$aa = report$R
report$bb = report$R
p = plot_mantel_cor_3_more(env = env.st,report = report,title = c("A","B","C") )
p
#four
report$aa = report$R
report$bb = report$R
report$cc = report$R
p = plot_mantel_cor_3_more(env = env.st,report = report,title = c("A","B","C","D") )
p
或者提前添加小编微信,我把包发给你。