用Python分析深圳程序员工资有多高?
阅读本文大约需要 14 分钟
概述
前言
统计结果
爬虫技术分析
爬虫代码实现
爬虫分析实现
后记
预告 -- 微服务
前言
多图预警、多图预警、多图预警。秋招季,毕业也多,跳槽也多。我们的职业发展还是要顺应市场需求,那么各门编程语言在深圳的需求怎么呢?工资待遇怎么样呢?zone 在上次写了这篇文章之后 用Python告诉你深圳房租有多高 ,想继续用 Python 分析一下,当前深圳的求职市场怎么样?顺便帮一下秋招的同学。于是便爬取了某拉钩招聘数据。以下是本次爬虫的样本数据:
本次统计数据量为 4658 ,其中某拉钩最多能显示 30 页数据,每页 15 条招聘信息,则总为:
30 x 15 = 450
首页爬取跳过一页,则为 435 条,故数据基本爬完。其余不够数量的语言为该语言在深圳只有这么多条招聘信息。
统计结果
各语言平均工资
其中
精准推荐
自然语言
机器学习
Go 语言
图像识别
独领风骚啊!!!平均工资都挺高的。区块链炒得挺火的,好像平均薪资并没有那么高。我统计完之后,感觉自己拖后腿了,ma 的!!!要删库跑路了!(注:下图为月薪,单位:K)
平均工资计算方式:
最高值与最低值,求平均数,如图薪资则为:
(10k + 20k)/2 = 15k
最后,再总体求平均数。
公司福利词云
看福利还是挺丰富的,带薪休假、下午茶、零食、节假日。
公司发展级别排行
总体由 A 轮向 D 轮缩减,大部分公司不需要融资,嗯,估计是拿不到资本融资,但是自家人又有钱的。
各语言工作年限要求与学历要求
看看你的本命语言的市场需求怎么样?你达标了吗?其中三至五年的攻城狮职位挺多的,不怕找不到工作。还有一个趋势是,薪资越高,学历要求越高高。看来学历还是挺重要的。
Java
Python
C 语言
机器学习
图像识别
自然语言
区块链
Go 语言
PHP
Android
iOS
web 前端
精准推荐
爬虫技术分析
请求库:selenium
HTML 解析:BeautifulSoup、xpath
词云:wordcloud
数据可视化:pyecharts
数据库:MongoDB
数据库连接:pymongo
爬虫代码实现
看完统计结果之后,有没有跃跃欲试?想要自己也实现以下代码?以下为代码实现。
对网页右击,点击检查,找到一条 item 的数据:
数据库存储结构:
/* 1 */
{
"_id" : ObjectId("5b8b89328ffaed60a308bacd"),
"education" : "本科",
"companySize" : "2000人以上",
"name" : "python开发工程师",
"welfare" : "“朝九晚五,公司平台大,发展机遇多,六险一金”",
"salaryMid" : 12.5,
"companyType" : "移动互联网",
"salaryMin" : "10",
"salaryMax" : "15",
"experience" : "经验3-5年",
"companyLevel" : "不需要融资",
"company" : "XXX技术有限公司"
}
由于篇幅原因,以下只展示主要代码:
# 获取网页源码数据
# language => 编程语言
# city => 城市
# collectionType => 值:True/False True => 数据库表以编程语言命名 False => 以城市命名
def main(self, language, city, collectionType):
print(" 当前爬取的语言为 => " + language + " 当前爬取的城市为 => " + city)
url = self.getUrl(language, city)
browser = webdriver.Chrome()
browser.get(url)
browser.implicitly_wait(10)
for i in range(30):
selector = etree.HTML(browser.page_source) # 获取源码
soup = BeautifulSoup(browser.page_source, "html.parser")
span = soup.find("div", attrs={"class": "pager_container"}).find("span", attrs={"action": "next"})
print(
span) # <span action="next" class="pager_next pager_next_disabled" hidefocus="hidefocus">下一页<strong class="pager_lgthen pager_lgthen_dis"></strong></span>
classArr = span['class']
print(classArr) # 输出内容为 -> ['pager_next', 'pager_next_disabled']
attr = list(classArr)[0]
attr2 = list(classArr)[1]
if attr2 == "pager_next_disabled":#分析发现 class 属性为 ['pager_next', 'pager_next_disabled'] 时,【下一页】按钮不可点击
print("已经爬到最后一页,爬虫结束")
break
else:
print("还有下一页,爬虫继续")
browser.find_element_by_xpath('//*[@id="order"]/li/div[4]/div[2]').click() # 点击【下一页】按钮
time.sleep(5)
print('第{}页抓取完毕'.format(i + 1))
self.getItemData(selector, language, city, collectionType)# 解析 item 数据,并存进数据库
browser.close()
爬虫分析实现
# 获取各语言样本数量
def getLanguageNum(self):
analycisList = []
for index, language in enumerate(self.getLanguage()):
collection = self.zfdb["z_" + language]
totalNum = collection.aggregate([{'$group': {'_id': '', 'total_num': {'$sum': 1}}}])
totalNum2 = list(totalNum)[0]["total_num"]
analycisList.append(totalNum2)
return (self.getLanguage(), analycisList)
# 获取各语言的平均工资
def getLanguageAvgSalary(self):
analycisList = []
for index, language in enumerate(self.getLanguage()):
collection = self.zfdb["z_" + language]
totalSalary = collection.aggregate([{'$group': {'_id': '', 'total_salary': {'$sum': '$salaryMid'}}}])
totalNum = collection.aggregate([{'$group': {'_id': '', 'total_num': {'$sum': 1}}}])
totalNum2 = list(totalNum)[0]["total_num"]
totalSalary2 = list(totalSalary)[0]["total_salary"]
analycisList.append(round(totalSalary2 / totalNum2, 2))
return (self.getLanguage(), analycisList)
# 获取一门语言的学历要求(用于 pyecharts 的词云)
def getEducation(self, language):
results = self.zfdb["z_" + language].aggregate([{'$group': {'_id': '$education', 'weight': {'$sum': 1}}}])
educationList = []
weightList = []
for result in results:
educationList.append(result["_id"])
weightList.append(result["weight"])
# print(list(result))
return (educationList, weightList)
# 获取一门语言的工作年限要求(用于 pyecharts 的词云)
def getExperience(self, language):
results = self.zfdb["z_" + language].aggregate([{'$group': {'_id': '$experience', 'weight': {'$sum': 1}}}])
totalAvgPriceDirList = []
for result in results:
totalAvgPriceDirList.append(
{"value": result["weight"], "name": result["_id"] + " " + str(result["weight"])})
return totalAvgPriceDirList
# 获取 welfare 数据,用于构建福利词云
def getWelfare(self):
content = ''
queryArgs = {}
projectionFields = {'_id': False, 'welfare': True} # 用字典指定
for language in self.getLanguage():
collection = self.zfdb["z_" + language]
searchRes = collection.find(queryArgs, projection=projectionFields).limit(1000)
for result in searchRes:
print(result["welfare"])
content += result["welfare"]
return content
# 获取公司级别排行(用于条形图)
def getAllCompanyLevel(self):
levelList = []
weightList = []
newWeightList = []
attrList = ["A轮", "B轮", "C轮", "D轮及以上", "不需要融资", "上市公司"]
for language in self.getLanguage():
collection = self.zfdb["z_" + language]
# searchRes = collection.find(queryArgs, projection=projectionFields).limit(1000)
results = collection.aggregate([{'$group': {'_id': '$companyLevel', 'weight': {'$sum': 1}}}])
for result in results:
levelList.append(result["_id"])
weightList.append(result["weight"])
for index, attr in enumerate(attrList):
newWeight = 0
for index2, level in enumerate(levelList):
if attr == level:
newWeight += weightList[index2]
newWeightList.append(newWeight)
return (attrList, newWeightList)
Tomcat的三种运行模式
Nginx反向代理upstream模块介绍
Docker基础知识
Computer network security
Tomcat和Weblogic的区别
监控篇 | Prometheus 认识
监控篇 | Prometheus 安装
监控篇 | Prometheus 架构
Shell正则三剑客 | sed命令
Shell正则三剑客 | awk命令
Shell正则三剑客 | grep命令
高可用Redis服务架构分析与搭建
Linux磁盘扩容 | LVM逻辑卷使用手册
99%的Linux运维工程师必须要掌握的命令及运用
Linux环境搭建 | 手把手教你如何安装Linux虚拟机
Linux环境搭建 | 手把手教你如何安装CentOS7虚拟机
Linux环境下Oracle数据库常用命令
百行Python代码 | 告诉你国庆假期哪些旅游景点爆满
长按二维码
关注我们吧