查看原文
其他

R语言和医学统计学系列(2):方差分析

阿越就是我 医学和生信笔记 2023-02-25


前言

这是R语言和医学统计学的第2篇内容。

第1篇请见:R语言和医学统计学系列(1):t检验

使用R语言进行统计学是我学习R语言最开始的初衷,没想到从此一发不可收拾,打开了新世界的大门。这个系列也是我最开始学习R语言时的笔记。希望对大家有帮助。

主要是用R语言复现课本中的例子。我使用的课本是孙振球主编的《医学统计学》第4版,封面如下:

课本封面

我的研究生课程并没有把整本书的全部学完,只学习了其中的一部分,因此本系列也是只针对其中学过的部分进行复现。另外对于统计描述部分也不在这里探讨。

完全随机设计资料的方差分析

使用课本例4-2的数据。

首先是构造数据,本次数据自己从书上摘录。。

trt<-c(rep("group1",30),rep("group2",30),rep("group3",30),rep("group4",30))

weight<-c(3.53,4.59,4.34,2.66,3.59,3.13,3.30,4.04,3.53,3.56,3.85,4.07,1.37,
          3.93,2.33,2.98,4.00,3.55,2.64,2.56,3.50,3.25,2.96,4.30,3.52,3.93,
          4.19,2.96,4.16,2.59,2.42,3.36,4.32,2.34,2.68,2.95,2.36,2.56,2.52,
          2.27,2.98,3.72,2.65,2.22,2.90,1.98,2.63,2.86,2.93,2.17,2.72,1.56,
          3.11,1.81,1.77,2.80,3.57,2.97,4.02,2.31,2.86,2.28,2.39,2.28,2.48,
          2.28,3.48,2.42,2.41,2.66,3.29,2.70,2.66,3.68,2.65,2.66,2.32,2.61,
          3.64,2.58,3.65,3.21,2.23,2.32,2.68,3.04,2.81,3.02,1.97,1.68,0.89,
          1.06,1.08,1.27,1.63,1.89,1.31,2.51,1.88,1.41,3.19,1.92,0.94,2.11,
          2.81,1.98,1.74,2.16,3.37,2.97,1.69,1.19,2.17,2.28,1.72,2.47,1.02,
          2.52,2.10,3.71)

data1<-data.frame(trt,weight)

head(data1)
##      trt weight
## 1 group1   3.53
## 2 group1   4.59
## 3 group1   4.34
## 4 group1   2.66
## 5 group1   3.59
## 6 group1   3.13
例4-2

数据一共两列,第一列是分组(一共四组),第二列是低密度脂蛋白测量值

先简单看下数据分布

boxplot(weight ~ trt, data = data1)

进行完全随机设计资料的方差分析:

fit <- aov(weight ~ trt, data = data1)
summary(fit)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## trt           3  32.16  10.719   24.88 1.67e-12 ***
## Residuals   116  49.97   0.431                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

结果显示组间自由度为3,组内自由度为116,组间离均差平方和为32.16,组内离均差平方和为49.97,组间均方为10.719,组内均方为0.431,F值=24.88,p=1.67e-12,和课本一致。

再简单介绍一下可视化的平均数和可信区间的方法:

library(gplots)
## 
## 载入程辑包:'gplots'
## The following object is masked from 'package:stats':
## 
##     lowess
plotmeans(weight~trt,xlab = "treatment",ylab = "weight",
          main="mean plot\nwith95% CI")

多个样本间的多重比较

这里介绍一种TukeyHSD方法:

TukeyHSD(fit) ### 每个组之间进行比较,多重比较
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = weight ~ trt, data = data1)
## 
## $trt
##                      diff        lwr        upr     p adj
## group2-group1 -0.71500000 -1.1567253 -0.2732747 0.0002825
## group3-group1 -0.73233333 -1.1740587 -0.2906080 0.0001909
## group4-group1 -1.46400000 -1.9057253 -1.0222747 0.0000000
## group3-group2 -0.01733333 -0.4590587  0.4243920 0.9996147
## group4-group2 -0.74900000 -1.1907253 -0.3072747 0.0001302
## group4-group3 -0.73166667 -1.1733920 -0.2899413 0.0001938

可视化结果:

par(las=2,mar=c(5,8,4,2))
plot(TukeyHSD(fit))

随机区组设计资料的方差分析

使用例4-3的数据。

首先是构造数据,本次数据自己从书上摘录。。

weight <- c(0.82,0.65,0.51,0.73,0.54,0.23,0.43,0.34,0.28,0.41,0.21,
            0.31,0.68,0.43,0.24)
block <- c(rep(c("1","2","3","4","5"),each=3))
group <- c(rep(c("A","B","C"),5))

data4_4 <- data.frame(weight,block,group)

head(data4_4)
##   weight block group
## 1   0.82     1     A
## 2   0.65     1     B
## 3   0.51     1     C
## 4   0.73     2     A
## 5   0.54     2     B
## 6   0.23     2     C
例4-3

数据一共3列,第一列是小白鼠肉瘤重量,第二列是区组因素(5个区组),第三列是分组(一共3组)

进行完全随机设计资料的方差分析:

fit <- aov(weight ~ block + group,data = data4_4) #随机区组设计方差分析,注意顺序
summary(fit)
##             Df Sum Sq Mean Sq F value  Pr(>F)   
## block        4 0.2284 0.05709   5.978 0.01579 * 
## group        2 0.2280 0.11400  11.937 0.00397 **
## Residuals    8 0.0764 0.00955                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

结果显示区组间自由度为4,分组间自由度为2,组内自由度为8,区组间离均差平方和为0.2284,分组间离均差平方和为0.2280,组内离均差平方和为0.0764,区组间均方为0.05709,分组间均方为0.1140,组内均方为0.00955,区组间F值=5.798,p=0.01579,分组间F值=11.937,p=0.00397,和课本一致。

拉丁方设计方差分析

使用课本例4-5的数据。

首先是构造数据,本次数据自己从书上摘录。。

psize <- c(87,75,81,75,84,66,73,81,87,85,64,79,73,73,74,78,73,77,77,68,69,74,76,73,
           64,64,72,76,70,81,75,77,82,61,82,61)
drug <- c("C","B","E","D","A","F","B","A","D","C","F","E","F","E","B","A","D","C",
          "A","F","C","B","E","D","D","C","F","E","B","A","E","D","A","F","C","B")
col_block <- c(rep(1:6,6))
row_block <- c(rep(1:6,each=6))
mydata <- data.frame(psize,drug,col_block,row_block)
mydata$col_block <- factor(mydata$col_block)
mydata$row_block <- factor(mydata$row_block)
str(mydata)
## 'data.frame': 36 obs. of  4 variables:
##  $ psize    : num  87 75 81 75 84 66 73 81 87 85 ...
##  $ drug     : chr  "C" "B" "E" "D" ...
##  $ col_block: Factor w/ 6 levels "1","2","3","4",..: 1 2 3 4 5 6 1 2 3 4 ...
##  $ row_block: Factor w/ 6 levels "1","2","3","4",..: 1 1 1 1 1 1 2 2 2 2 ...

数据一共4列,第一列是皮肤疱疹大小,第二列是不同药物(处理因素,共5种),第三列是列区组因素,第四列是行区组因素。

进行拉丁方设计的方差分析:

fit <- aov(psize ~ drug + row_block + col_block, data = mydata)
summary(fit)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## drug         5  667.1  133.43   3.906 0.0124 *
## row_block    5  250.5   50.09   1.466 0.2447  
## col_block    5   85.5   17.09   0.500 0.7723  
## Residuals   20  683.2   34.16                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

结果显示行区组间自由度为5,列区组间自由度为5,分组(处理因素)间自由度为5,组内自由度为20;行区组间离均差平方和为250.5,列区组间离均差平方和为85.5,分组间离均差平方和为667.1,组内离均差平方和为0.0683.2;行区组间均方为50.09,列区组间均方为17.09,分组间均方为133.43,组内均方为34.16, 行区组间F值=1.466,p=0.2447,列区组间F值=0.5,p=0.7723,分组间F值=3.906,p=0.0124,和课本一致。

两阶段交叉设计资料方差分析

使用课本例4-6的数据。

首先是构造数据,本次数据自己从书上摘录。。

contain <- c(760,770,860,855,568,602,780,800,960,958,940,952,635,650,440,450,
             528,530,800,803)
phase <- rep(c("phase_1","phase_2"),10)
type <- c("A","B","B","A","A","B","A","B","B","A","B","A","A","B","B","A",
          "A","B","B","A")
testid <- rep(1:10,each=2)
mydata <- data.frame(testid,phase,type,contain)

str(mydata)
## 'data.frame': 20 obs. of  4 variables:
##  $ testid : int  1 1 2 2 3 3 4 4 5 5 ...
##  $ phase  : chr  "phase_1" "phase_2" "phase_1" "phase_2" ...
##  $ type   : chr  "A" "B" "B" "A" ...
##  $ contain: num  760 770 860 855 568 602 780 800 960 958 ...

mydata$testid <- factor(mydata$testid)

数据一共4列,第一列是受试者id,第二列是不同阶段,第三列是测定方法,第四列是测量值。

简单看下2个阶段情况:

table(mydata$phase,mydata$type)
##          
##           A B
##   phase_1 5 5
##   phase_2 5 5

进行两阶段交叉设计资料方差分析:

fit <- aov(contain~phase+type+testid,mydata)
summary(fit)
##             Df Sum Sq Mean Sq  F value   Pr(>F)    
## phase        1    490     490    9.925   0.0136 *  
## type         1    198     198    4.019   0.0799 .  
## testid       9 551111   61235 1240.195 1.32e-11 ***
## Residuals    8    395      49                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

结果和课本一致!

以上就是R语言做方差分析的例子,所有代码复制粘贴即可运行!数据来源于课本,可以对照这课本一起学习。


欢迎关注我的公众号:医学和生信笔记

医学和生信笔记 公众号主要分享:1.医学小知识、肛肠科小知识;2.R语言和Python相关的数据分析、可视化、机器学习等;3.生物信息学学习资料和自己的学习笔记!


往期精彩内容:

超详细的R语言热图之complexheatmap系列6


超详细的R语言热图之complexheatmap系列07


超详细的R语言热图之complexheatmap系列8(完结篇)


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存