查看原文
其他

超强的gtSummary ≈ gt + comparegroups ??

阿越就是我 医学和生信笔记 2023-06-15
关注公众号,发送R语言python,可获取资料

💡专注R语言在🩺生物医学中的使用


在R语言中绘制表格的包我们介绍了非常多,除了专门绘制基线资料表的compareGroups/tableone/table1,还介绍了绘制普通表格的gt,以及扩展包gtExtra

gtsummary包是专门用来画表格的,高度自定义的多种选项,快速绘制发表级表格。可用于总结汇总数据集、多种模型等。

  • 快速绘制描述性统计表格、基线资料表(例如医学期刊常见的表1!) 。自动检测数据集中的连续、多分类和二分类变量,选择合适的描述性统计方法,还包括每个变量的缺失值。
  • 绘制回归模型结果。自动识别常见的回归模型,如逻辑回归和Cox比例风险回归,会在表格中自动填充适当的列标题(即优势比和风险比)。
  • 高度自定义的表格。字体字号、增加P值,合并单元格等,通通支持自定义。
  • 联合broom/gt/labelled等R包,可以直接生成发表级的结果,配合rmarkdown,可自定输出到Word、PDF、HTML等多种文件中。

本期目录:

  • 安装

  • tbl_summary

    • 基本使用

    • 自定义输出

    • 修改统计方法

    • 同一个变量展示多个统计量

    • 交叉表

  • 和compareGroups包进行比较

安装

# 2选1
install.packages("gtsummary")

remotes::install_github("ddsjoberg/gtsummary")

tbl_summary

自动计算描述性统计指标,支持连续型变量、分类变量,生成的表格支持自定义细节。

可用于绘制我们临床中常见的表1(基线资料表/三线表)!

library(gtsummary)
suppressPackageStartupMessages(library(tidyverse))

使用自带的trial数据集进行演示,这个数据集也是临床中常见的数据类型。包含200个病人的基本信息,比如年龄、性别、治疗方式、肿瘤分级等,分为2组,一组用A药,另一组用B药。

# 查看一下数据结构
glimpse(trial)
## Rows: 200
## Columns: 8
## $ trt      <chr> "Drug A", "Drug B", "Drug A", "Drug A", "Drug A", "Drug B", "…
## $ age      <dbl> 23, 9, 31, NA, 51, 39, 37, 32, 31, 34, 42, 63, 54, 21, 48, 71…
## $ marker   <dbl> 0.160, 1.107, 0.277, 2.067, 2.767, 0.613, 0.354, 1.739, 0.144…
## $ stage    <fct> T1, T2, T1, T3, T4, T4, T1, T1, T1, T3, T1, T3, T4, T4, T1, T…
## $ grade    <fct> II, I, II, III, III, I, II, I, II, I, III, I, III, I, I, III,…
## $ response <int> 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0…
## $ death    <int> 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0…
## $ ttdeath  <dbl> 24.00, 24.00, 24.00, 17.64, 16.43, 15.64, 24.00, 18.43, 24.00…

基本使用

  • 数据类型自动检测(连续型变量或者分类变量)
  • 如果列有属性值(label attributes),自动添加
  • 自动添加脚注
# 选取部分数据,方便演示
trial2 <- trial %>% select(trt,age,grade)

trial2 %>% tbl_summary()
image-20220704180759636

当然是支持分组比较的,添加P值不在话下!

trial2 %>% tbl_summary(by = trt) %>% add_p()
image-20220704180828586

自定义输出

超多自定义选项:

自定义选项

自定义输出表格外观:

trial2 %>%
  tbl_summary(
    by = trt, # 分组
    
    # 根据变量类型选择显示方式,和case_when()的使用非常像哦
    statistic = list(all_continuous() ~ "{mean} ({sd})",
                     all_categorical() ~ "{n} / {N} ({p}%)"),
    
    # 控制小数点
    digits = all_continuous() ~ 2,
    
    # 列名
    label = grade ~ "Tumor Grade",
    
    # 缺失值
    missing_text = "(Missing)"
  ) %>% 
  add_p()
image-20220704180901410

根据变量类型选择显示方式,有多种实现方法,下面列出了支持的3种方式:

方法1方法2方法3
all_continuous() ~ "{mean}"c("age", "marker") ~ "{mean}"list(age = "{mean}", marker = "{mean}")
list(all_continuous() ~ "{mean}")c(age, marker) ~ "{mean}"-
-list(c(age, marker) ~ "{mean}")-

修改变量显示的名称也可以用同样的方法。

修改统计方法

可以为不同的列自定义不同的统计方法。

trial2 %>%
  tbl_summary(
    by = trt, # 分组
    
    # 根据变量类型选择显示方式,和case_when()的使用非常像哦
    statistic = list(all_continuous() ~ "{mean} ({sd})",
                     all_categorical() ~ "{n} / {N} ({p}%)"),
    
    # 控制小数点
    digits = all_continuous() ~ 2,
    
    # 列名
    label = grade ~ "Tumor Grade",
    
    # 缺失值
    missing_text = "(Missing)"
  ) %>% 
  add_p(test = list(age ~ "t.test"# 为不同的列选择不同的统计方法
                    grade ~ "kruskal.test"
                    ),
        pvalue_fun = ~style_pvalue(.x, digits = 2)
        )
image-20220704180944272

除了添加P值外,还可以添加超多东西:

添加其他统计值

修改表格细节的选项:

修改表格细节

一个简单的小例子:

trial2 %>%
  tbl_summary(by = trt) %>%
  add_p(pvalue_fun = ~style_pvalue(.x, digits = 2)) %>%
  add_overall() %>%
  add_n() %>%
  modify_header(label ~ "**Variable**") %>%
  modify_spanning_header(c("stat_1""stat_2") ~ "**Treatment Received**") %>%
  modify_footnote(
    all_stat_cols() ~ "Median (IQR) or Frequency (%)"
  ) %>%
  modify_caption("**Table 1. Patient Characteristics**") %>%
  bold_labels()
image-20220704181012122

还可以和gt包连用。使用as_gt()函数转换为gt对象后们就可以使用gt包的函数了。

trial2 %>%
  tbl_summary(by = trt, missing = "no") %>%
  add_n() %>%
  as_gt() %>% # 转换为gt对象
  gt::tab_source_note(gt::md("*This data is simulated*"))
image-20220704181032609

同一个变量展示多个统计量

对于连续型变量,可以在多行显示多个统计值,只要设置type = all_continuous() ~ "continuous2"即可。

trial2 %>%
  select(age, trt) %>%
  tbl_summary(
    by = trt,
    type = all_continuous() ~ "continuous2",
    statistic = all_continuous() ~ c("{N_nonmiss}",
                                     "{median} ({p25}, {p75})"
                                     "{min}, {max}"),
    missing = "no"
  ) %>%
  add_p(pvalue_fun = ~style_pvalue(.x, digits = 2)) #修改P值小数点
image-20220704181053665

交叉表

可以非常方便的绘制交叉表,临床上我们喜欢叫列联表~

trial %>%
  tbl_cross(
    row = stage, # 指定行
    col = trt,   # 指定列
    percent = "cell"
  ) %>%
  add_p()
image-20220704181115122

和compareGroups包进行比较

这么多画表格的包,这个很强,比gt强不少!但我还是喜欢用compareGroups包,因为简单,一句代码即可搞定,所以,必须比较下,哪个好用,尤其是在画基线资料表方面!

library(compareGroups)
data("predimed")

glimpse(predimed)
## Rows: 6,324
## Columns: 15
## $ group     <fct> Control, Control, MedDiet + VOO, MedDiet + Nuts, MedDiet + V…
## $ sex       <fct> Male, Male, Female, Male, Female, Male, Female, Male, Male, …
## $ age       <dbl> 58, 77, 72, 71, 79, 63, 75, 66, 71, 76, 64, 76, 76, 65, 63, …
## $ smoke     <fct> Former, Current, Former, Former, Never, Former, Never, Never…
## $ bmi       <dbl> 33.53, 31.05, 30.86, 27.68, 35.94, 41.66, 25.90, 25.95, 30.9…
## $ waist     <dbl> 122, 119, 106, 118, 129, 143, 88, 85, 90, 79, 100, 89, 123, …
## $ wth       <dbl> 0.7530864, 0.7300614, 0.6543210, 0.6941177, 0.8062500, 0.803…
## $ htn       <fct> No, Yes, No, Yes, Yes, Yes, No, Yes, Yes, Yes, Yes, Yes, Yes…
## $ diab      <fct> No, Yes, Yes, No, No, Yes, Yes, Yes, No, Yes, No, No, Yes, Y…
## $ hyperchol <fct> Yes, No, No, Yes, Yes, Yes, Yes, No, Yes, No, Yes, No, Yes, …
## $ famhist   <fct> No, No, Yes, No, No, No, No, Yes, No, No, No, No, No, Yes, N…
## $ hormo     <fct> No, No, No, No, No, NA, NA, No, No, No, No, No, No, No, No, …
## $ p14       <dbl> 10, 10, 8, 8, 9, 9, 8, 9, 14, 9, 10, 8, 6, 10, 11, 12, 12, 1…
## $ toevent   <dbl> 5.37440109, 6.09719372, 5.94661188, 2.90759754, 4.76112270, …
## $ event     <fct> Yes, No, No, Yes, No, Yes, No, No, Yes, No, No, Yes, No, No,…

首先是compareGroups:

# 一样代码,太简单!不会写复杂代码的可以直接输出到Word里面修改
restab <- descrTable(group ~ ., data = predimed) 
restab
## 
## --------Summary descriptives table by 'Intervention group'---------
## 
## ____________________________________________________________________________________ 
##                                    Control    MedDiet + Nuts MedDiet + VOO p.overall 
##                                     N=2042        N=2100        N=2182               
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## Sex:                                                                        <0.001   
##     Male                         812 (39.8%)   968 (46.1%)    899 (41.2%)            
##     Female                       1230 (60.2%)  1132 (53.9%)  1283 (58.8%)            
## Age                              67.3 (6.28)   66.7 (6.02)    67.0 (6.21)    0.003   
## Smoking:                                                                     0.444   
##     Never                        1282 (62.8%)  1259 (60.0%)  1351 (61.9%)            
##     Current                      270 (13.2%)   296 (14.1%)    292 (13.4%)            
##     Former                       490 (24.0%)   545 (26.0%)    539 (24.7%)            
## Body mass index                  30.3 (3.96)   29.7 (3.77)    29.9 (3.71)   <0.001   
## Waist circumference               101 (10.8)    100 (10.6)    100 (10.4)     0.045   
## Waist-to-height ratio            0.63 (0.07)   0.62 (0.06)    0.63 (0.06)   <0.001   
## Hypertension:                                                                0.249   
##     No                           331 (16.2%)   362 (17.2%)    396 (18.1%)            
##     Yes                          1711 (83.8%)  1738 (82.8%)  1786 (81.9%)            
## Type-2 diabetes:                                                             0.017   
##     No                           1072 (52.5%)  1150 (54.8%)  1100 (50.4%)            
##     Yes                          970 (47.5%)   950 (45.2%)   1082 (49.6%)            
## Dyslipidemia:                                                                0.423   
##     No                           563 (27.6%)   561 (26.7%)    622 (28.5%)            
##     Yes                          1479 (72.4%)  1539 (73.3%)  1560 (71.5%)            
## Family history of premature CHD:                                             0.581   
##     No                           1580 (77.4%)  1640 (78.1%)  1675 (76.8%)            
##     Yes                          462 (22.6%)   460 (21.9%)    507 (23.2%)            
## Hormone-replacement therapy:                                                 0.850   
##     No                           1811 (98.3%)  1835 (98.4%)  1918 (98.2%)            
##     Yes                           31 (1.68%)    30 (1.61%)    36 (1.84%)             
## MeDiet Adherence score           8.44 (1.94)   8.81 (1.90)    8.77 (1.97)   <0.001   
## follow-up to main event (years)  4.09 (1.74)   4.31 (1.70)    4.64 (1.60)   <0.001   
## AMI, stroke, or CV Death:                                                    0.064   
##     No                           1945 (95.2%)  2030 (96.7%)  2097 (96.1%)            
##     Yes                           97 (4.75%)    70 (3.33%)    85 (3.90%)             
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

然后是gtSummary:

predimed %>% 
  tbl_summary(by = group,
              type = all_dichotomous() ~ "categorical"
              ) %>% 
  add_overall() %>% 
  
  # 可以自定义每一列的统计方法,这里就不演示了
  add_p(pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% 
  
  # 添加spanner
  modify_spanning_header(c("stat_1","stat_2","stat_3") ~ "**Diet Received**")
image-20220704181158756

貌似结果比compareGroups更好看...有些结果不太一样,因为默认方法不太一样。

一个是一行代码出表,另一个只需要多加几行代码就可以绘制发表级别的表,选哪个呢?

为了方便大家复现结果,运行环境如下:

sessionInfo()
## R version 4.2.0 (2022-04-22 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19044)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=Chinese (Simplified)_China.utf8 
## [2] LC_CTYPE=Chinese (Simplified)_China.utf8   
## [3] LC_MONETARY=Chinese (Simplified)_China.utf8
## [4] LC_NUMERIC=C                               
## [5] LC_TIME=Chinese (Simplified)_China.utf8    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] compareGroups_4.5.1 forcats_0.5.1       stringr_1.4.0      
##  [4] dplyr_1.0.9         purrr_0.3.4         readr_2.1.2        
##  [7] tidyr_1.2.0         tibble_3.1.7        ggplot2_3.3.6      
## [10] tidyverse_1.3.1     gtsummary_1.6.1    
## 
## loaded via a namespace (and not attached):
##  [1] fs_1.5.2            lubridate_1.8.0     webshot_0.5.3      
##  [4] httr_1.4.3          tools_4.2.0         backports_1.4.1    
##  [7] utf8_1.2.2          R6_2.5.1            DBI_1.1.3          
## [10] colorspace_2.0-3    nnet_7.3-17         withr_2.5.0        
## [13] tidyselect_1.1.2    compiler_4.2.0      chron_2.3-57       
## [16] cli_3.3.0           rvest_1.0.2         gt_0.6.0           
## [19] HardyWeinberg_1.7.5 flextable_0.7.2     mice_3.14.0        
## [22] xml2_1.3.3          officer_0.4.3       sass_0.4.1         
## [25] scales_1.2.0        checkmate_2.1.0     commonmark_1.8.0   
## [28] systemfonts_1.0.4   digest_0.6.29       rmarkdown_2.14     
## [31] svglite_2.1.0       base64enc_0.1-3     pkgconfig_2.0.3    
## [34] htmltools_0.5.2     dbplyr_2.2.0        fastmap_1.1.0      
## [37] rlang_1.0.2         readxl_1.4.0        rstudioapi_0.13    
## [40] generics_0.1.2      jsonlite_1.8.0      zip_2.2.0          
## [43] magrittr_2.0.3      kableExtra_1.3.4    Matrix_1.4-1       
## [46] Rcpp_1.0.8.3        munsell_0.5.0       fansi_1.0.3        
## [49] gdtools_0.2.4       lifecycle_1.0.1     stringi_1.7.6      
## [52] grid_4.2.0          parallel_4.2.0      crayon_1.5.1       
## [55] lattice_0.20-45     haven_2.5.0         splines_4.2.0      
## [58] hms_1.1.1           knitr_1.39          pillar_1.7.0       
## [61] uuid_1.1-0          reprex_2.0.1        glue_1.6.2         
## [64] evaluate_0.15       data.table_1.14.2   broom.helpers_1.7.0
## [67] modelr_0.1.8        vctrs_0.4.1         tzdb_0.3.0         
## [70] cellranger_1.1.0    gtable_0.3.0        assertthat_0.2.1   
## [73] xfun_0.31           broom_0.8.0         Rsolnp_1.16        
## [76] survival_3.3-1      viridisLite_0.4.0   truncnorm_1.0-8    
## [79] writexl_1.4.0       ellipsis_0.3.2





获取更多信息,欢迎加入🐧QQ交流群:613637742


医学和生信笔记,专注R语言在临床医学中的使用、R语言数据分析和可视化。主要分享R语言做医学统计学、meta分析、网络药理学、临床预测模型、机器学习、生物信息学等。


往期回顾

分组、离断式坐标轴


超详细教程:修改ggplot2图例


ggplot2修改坐标轴详细介绍


R语言画好看的聚类


R语言可视化聚类


使用R语言美化PCA


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存