其他
气象学家与数学家的混沌接力
加星标,才能不错过每日推送!方法见文末动图
通常,衡量一门自然科学的成熟程度的一个标识是,其是否完成了高度形式化的数学表达。自然科学的研究,从直观的经验认知出发,借由完成自然科学家与数学家之间的接力(或者自然科学家本身即为高明的数学家),形成一套完整有力的数学形式理论框架,用于新的自然现象的解析和预测,便形成了看上去自洽的一个体系。混沌理论的提出,貌似也是这样的一段旅程。但实则这段旅程当中,有许多回环往复的道路分岔,也因之显得风光旖旎。
到目前为止,我在为《返朴》所写的两篇文章中讨论的函数迭代(参见《这么说迭代,你一定能懂》《一名生态学家的数学探索》),周期点的周期只是1和2的一些次方,而看不到其他周期的周期轨道。偶数2后面的第一个奇数是3,它也是第一个奇素数。在中国的成语中,含有“三”的那些大都与“多”这个概念有关联,比如“三思而行”、“三令五申”、“三人成虎”、“三教九流”、“一而再,再而三”、“三人行必有我师焉”、“三个臭皮匠,顶个诸葛亮”等等。中国春秋时代流传至今的一些名言也强调了“三”,如老子的“道生一,一生二,二生三,三生万物”和屈原在《天问》中的问话“阴阳三合,何本何化?”
回到迭代上来,读者自然会问:当给定的函数具有一个周期为三的周期点时,会有什么发生?我们已经看到周期为一的周期点(即不动点)或周期为二的周期点的存在不一定能激发滚滚波涛。事实上,对于恒等函数f(x) = x,每一个实数都是它的不动点,所以就没有周期大于1的周期点了,这是一个完全“规矩”并且特别简单的严格递增函数,即自变量越大则函数值越大。对于曾经做过例子的“变号函数”f(x) = -x,每一个实数被映射到它的相反数,所以除了0 这个不动点外,每一个非零数都是周期为二的周期点,故变号函数没有周期大于2的周期点,它是一个既规矩又简单的严格递减函数,即自变量越大则函数值越小。然而,一旦某个函数有了一个周期为三的周期点,它必定是非单调的,因而也一定是非线性的;几何上看它的图象或者有山峰,或者有山谷,或者二者都有。这里给出一个简单的证明,领略一下推理的逻辑力量。令函数f的周期-3轨道为{a, b, c},即f(a) = b,f(b) = c,f(c) = a。不失一般性,可假设a < b < c。如果f是单调的,比方说f是单调递增的,则由b < c 推得c = f(b) ≤ f(c) = a,与 a < c的假设矛盾;又比方说如果f是单调递减的,则由a < b推得b = f(a) ≥ f(b) = c, 与b < c的假设矛盾。因此f不能是单调函数。读者可对a, b, c之间的其他大小关系证明同一结论。既然一个具有周期-3轨道的函数在其定义域上是非单调的,它会展示出丰富多彩的现象吗?答案是确实会的,它不仅孕育出一个令人惊奇的定理,而且还催生出一个崭新的数学名词。然而这一切均来源于一位气象学家的终生爱好和偶然发现,他关于天气预报的论文引导了数学家进入混沌的天地。01气象学家握住了起跑第一棒
数学家拿过接力棒
在接下来讲述李天岩和他的导师约克的“周期三”故事前,我们先简单介绍一下这两个人物。约克出生在美国新泽西州的一座小城Plainfield,但是在某个装潢精美的“世界名人录”里,他的出生地却成了中国北平(上世纪40年代时的北京称谓),并说他有十个孩子。2015年,在庆祝他的弟子、我的博士论文导师李天岩教授70周岁的师生聚会上,他告诉我这是他对诸如此类的出版物所玩的一出“恶作剧”,为嘲弄这些“我帮你出名,你帮我赚钱”的出版商,他故意杜撰了自己的部分历史,其实他只养育了三个孩子。他读高中时,数学课没有一门成绩达到90分。我在他后来电邮我的高中成绩单上看到的数学考试最高分是86。然而,这个班上的中等学生却获得了全州高中生数学竞赛的第三名。他自豪地告诉我:“我在高中阶段就学会了怎样学数学。”当约克考进私立名校纽约哥伦比亚大学后,课堂成绩依然不够漂亮。后来,当来自台湾的李天岩选了他做博士论文指导老师后,他告诉对方,“我在大学念书时没有B”,大学成绩几乎都是A的弟子以为他“全是A”,没想到老师笑眯眯地回答他:“C或C以下。”事实上,在大学的前三年,约克没有一门课拿到A,除了体育课。不过这个零记录在第四年终于被打破了,他拿到了至少一个A。虽然大学成绩单不甚争气,他却学到了许多,甚至还参加了著名的全美大学生普特南数学竞赛并做得非常之好,这帮助了他被像康奈尔大学这样的私立名校研究生院录取深造,但他却钟情于马里兰大学的应用数学研究以及那个独特的“流体力学及应用数学研究所”,便去了这所公立大学,于1966年获得数学博士学位后破格受聘留校工作。他曾担任过物理科学及技术研究所的所长和数学系的系主任,并被赋予“大学数学与物理杰出研究教授”的学校最高荣誉。他获得过的奖项中包括2003年度的“日本国际奖”。在约克教授的个人网页上,有一句是他特地写下的:A degree in mathematics is a license to explore the universe(数学学位是探索宇宙的许可证)。作为例证,洛伦茨教授的数学学士和硕士学位确实帮助他赢得世界公认的“混沌之父”桂冠。李天岩祖籍湖南,1945年6月28日出生于福建省沙县。他的父亲早年留学日本东京帝国大学医学院,获得医学博士学位,1934年回国任教湖南省湘雅医学院,先后担任过福建省省立医院和福建省省立医学院的院长,1948年去了台湾。李天岩及两个兄长很快随母亲与父亲团聚,从此他在祖国宝岛接受教育,1968年考入在台湾恢复建校的新竹清华大学,为数学系的首届毕业生。读大学时,他成绩名列前茅,兴趣宽广,全面发展,既是校足球队队员,又是校篮球队队长。1968年李天岩本科毕业,按国民党政府的规定服兵役一年,第二年他赴美国马里兰大学数学系攻读博士学位,不久就通过博士资格考试,跟随约克教授做博士论文。据他在晚年佳作《回首来时路》中说,大学成绩单很不漂亮的约克查到李天岩无比漂亮的清华成绩单时“显然吓了一跳,以为是那路杀来的武林高手”,然而作者在文中却认为他对数学的认知和品味以及怎样做学术研究,都是拜约克之巨大影响所赐。1973年3月的一个星期五下午,博士生李天岩来到约克教授的办公室,因什么“烦恼”的心结想向导师吐一吐“苦水”,但约克毫不理会他说的是什么,劈头就来一句,“I have a good idea for you!(告诉你一个好想法!)”这个想法就是约克从洛伦茨的文章中获得的灵感,它已在约克的头脑中直观地凸现,形成了一个数学猜想,但他却未能予以证明,所以他要请自己“微积分武功高强”的弟子试一试证实它或证否它。在那段时间里,李天岩一直在做常微分方程方面的研究,导师收他为徒后下达的第一个任务就是研究抽象空间常微分方程的初值问题,所以学生以为老师所说的“good idea”是关于微分方程研究的一个漂亮点子。在美国,学生与老师常常“没大没小”地互开玩笑,因为在中国盛行了两千多年的古训“师道尊严”在这个“年轻气盛”的国度从未流行过,大学里大行其道的是“真理面前人人平等”。李天岩半开玩笑地回应了导师一句问话:“Is your idea good enough for the Monthly?(你的想法是不是好得可以上《月刊》?)”Monthly是The American Mathematical Monthly(《美国数学月刊》)的简称,它是全世界读者人数最多的数学杂志,但也是一本读者对象主要是大学生及他们的老师的阐述性期刊。美国几乎每所大学或学院的数学系和学校图书馆都订阅这个数学好的大学本科生大都能看得懂的浅近杂志,但对美国的优秀大学生正餐之外“吃小灶”的这种数学教育法有盖世之功的这一本极佳刊物,对投稿文章作者的英文写作要求极高,拒稿率在百分之九十五左右,不写成阐述性而是以研究性专业杂志可以接受的“定义、引理、定理、推论”八股格式作文,统统都被枪毙,无论其数学内容多么漂亮。《月刊》是美国数学协会 (Mathematical Association of America) 旗下的几大通俗刊物之一,其他的如《高校数学杂志》(The College Mathematics Journal),对写作风格也有同样的要求,我曾在这个期刊上登过一篇文章《指数函数的动力学》,主编不厌其烦地帮助我修改词句,来回润色加工。文章从投稿到发表历时将近三年,最后的定稿面貌焕然一新。当李天岩从约克嘴里听到用数学语言不难表达的“good idea”之后,来办公室之前的不爽心情顿时烟消云散,马上感慨地说了一句:“It would be a perfect work for the Monthly!(这对《月刊》而言将是一篇完美之作!)”回到自己的研究生教学助理办公室后,他开始认真琢磨导师从气象学家数值天气预报的论文里提炼出的那个数学猜想:如果一个连续的将定义域区间映到自身的函数具有周期为三的周期点,那么它的无穷次迭代过程既有以同自然数一样多的周期轨道为代表的有序性态,也有以比自然数还要多的非周期轨道为特征的无序性态。他进入了试图证明它是对的状态之中。约克没有看错人,两个星期过后,李天岩通过巧妙地重复运用微分学里关于区间上连续函数的介值定理,严格证明了约克的想法为真。“介值定理”又称“中间值定理”,它指出如果f是一个定义域为闭区间[a, b]的连续函数,则对严格位于f(a)和f(b)之间的任意实数d,都存在属于开区间(a, b)的一点c使得f(c) = d。这个定理在几何上看是很显然的:连接位于一根直线两旁各一点的任何连续曲线必定会经过这根直线。它的一个特殊情形是:如果两数f(a)和f(b)异号,即f(a)f(b) < 0,则在(a, b)内一定存在一点c使得f(c) = 0。这个特殊结论推出两个断言。第一个是拓扑学中著名的布劳威尔不动点定理在最简单的区间情形时的特例:如果连续函数f将定义域[a, b]映到自身内,即f的值域包含在定义域之中,那么f在[a, b]中一定有不动点;这是介值定理的直接推论。第二个是:如果f的值域包含定义域[a, b],则 f在[a, b]中也有不动点;这是李天岩为了证明约克的猜想而发现的一个全新的不动点定理,在定理条件里只须将第一个定理假设中的定义域-值域包含关系换成反向包含关系。我在之前的文章中提到,不动点在几何上的意义就是函数图象与xy-坐标系对角线y = x的交点坐标。读者只要画出满足上述两个命题各自条件的函数图象,马上就能发现该曲线必定与对角线相交而得到不动点。李天岩还需要一个结果方能完成导师的重托,于是他干脆也把它证明了出来:设f为定义域为闭区间J的连续函数且闭区间[a, b]包含在值域f(J)之中,则J包含一个闭区间K使得f(K) = [a, b],即[a, b]是K在f下的像。读者也不妨画出f的图象,找到对应于值域中某个给定区间[a, b]的那个闭区间K。通过首先建立以上的几个预备结果,李天岩最终证明了如下后来名满天下的定理,该定理现以约克和李天岩师徒二人的英文姓氏按照西方通用的数学文章首字母排序署名法“Li-Yorke”命名:李-约克定理 设f是一个连续函数,将定义域区间映到自身。若它有周期为3的周期点,则(i)对任一自然数n,f有一个周期为n的周期点。(ii)存在定义域内的一个不可数的子集A,它不包含周期点,使得对A中任意两个不同的点x0和y0,分别从它们出发的对应迭代点的距离数列|fn(x0) - fn(y0)|当n趋向于无穷大时,其下极限为0,而上极限大于0。(iii)对A中任意一点x0及f的任一周期点p,分别从它们出发的对应迭代点的距离数列|fn(x0) –fn(p)|当n趋向于无穷大时,上极限大于0。定理中的几个数学术语实在太专业、太高深,连我都不想这样写。但本文已够长了,应该让读者休息一下,等我在下一篇文章中浅显地解释它们,并用初等语言让读者信服,为什么连续函数有周期-3点就保证有周期-n点。
致谢:作者感谢学者杨运洋阅读原稿并提出写法建议。
相关阅读
近期推荐
5 你一直在用的健康金指标,正被科学界不断质疑,还有一段黑历史
特 别 提 示
1. 进入『返朴』微信公众号底部菜单“精品专栏“,可查阅不同主题系列科普文章。
2. 『返朴』提供按月检索文章功能。关注公众号,回复四位数组成的年份+月份,如“1903”,可获取2019年3月的文章索引,以此类推。
版权说明:欢迎个人转发,任何形式的媒体或机构未经授权,不得转载和摘编。转载授权请在「返朴」微信公众号内联系后台。
长按下方图片关注「返朴」,查看更多历史文章