Nature Reviews | 胃肠道中的炎症小体:感染,癌症和肠道微生物群稳态(完整版)
Abstract
Inflammasome signalling is an emerging pillar of innate immunity and has a central role in the regulation of gastrointestinal health and disease. Activation of the inflammasome complex mediates both the release of the pro-inflammatory cytokines IL-1β and IL-18 and the execution of a form of inflammatory cell death known as pyroptosis. In most cases, these mediators of inflammation provide protection against bacterial, viral and protozoal infections. However, unchecked inflammasome activities perpetuate chronic inflammation, which underpins the molecular and pathophysiological basis of gastritis, IBD, upper and lower gastrointestinal cancer, nonalcoholic fatty liver disease and obesity. Studies have also highlighted an inflammasome signature in the maintenance of gut microbiota and gut–brain homeostasis. Harnessing the immunomodulatory properties of the inflammasome could transform clinical practice in the treatment of acute and chronic gastrointestinal and extragastrointestinal diseases. This Review presents an overview of inflammasome biology in gastrointestinal health and disease and describes the value of experimental and pharmacological intervention in the treatment of inflammasome-associated clinical manifestations.
01
炎症小体复合物
炎症小体传感受器 NLRP1b,NLRP3,NLRC4,AIM2 和 pyrin 都能够形成含有衔接蛋白ASC和半胱氨酸蛋白酶 caspase 1 的经典炎症小体复合物。NLRP1b 和 NLRC4 也在没有 ASC 的情况下募集 caspase 1,因为它们的结构中存在 CARD结构域 [1-3] 。NLRP3 和 NLRC4 的激活分别需要 NEK7 激酶和 NLR 家族成员神经元凋亡抑制蛋白(NAIP)。
Caspase 1裂解前体细胞因子pro-IL-1β 和 pro-IL-18 以及成孔蛋白 gasdermin D。Gasdermin D 的活性片段寡聚化导致细胞膜上形成孔洞,引发细胞焦亡(pyroptosis) [4-11]。这些孔洞允许从细胞中被动释放具有生物活性的 IL-1β 和 IL-18。
非经典炎症小体的定义是需要人类 caspase 4 和 caspase 5 或小鼠caspase 11激活的 NLRP3 炎症小体复合物12。这些半胱天冬酶(Caspase)的活化导致 gasdermin D 的裂解和细胞焦亡 [4-6]。gasdermin D 的成孔片段(pore-forming fragment)激活 NLRP3 炎症小体以及 IL-1β 与 IL-18 的 caspase 1 依赖性成熟 [4,5]。
TIPs:
pyroptosis:细胞焦亡,是一种新的程序性细胞死亡方式,其特征为依赖于半胱天冬酶-1(caspase-1),并伴有大量促炎症因子的释放。细胞焦亡的形态学特征、发生及调控机制等均不同于凋亡、坏死等其他细胞死亡方式[13];
Caspase: 半胱天冬酶;
02
炎症小体识别胃肠道的细菌,病毒,原生动物(protozoa)和蠕虫(helminths)
病原体携带大量病原相关分子模式 (pathogen-associated molecular patterns, PAMPs),这些 PAMPs 能够直接结合并且激活炎症小体感受器或诱导能被炎症小体感受器感知的细胞生理变化[1]。病原体也会对宿主细胞造成严重损害,从而诱导释放能够激活炎症小体的危险相关分子模式(danger-associated molecular patterns, DAMPs) [2]。
TIPs:
AIM2(absent in melanoma 2): 黑色素瘤缺乏因子2;
ASC(apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (CARD)): 含有半胱天冬酶激活和募集结构域 (CARD) 的凋亡相关斑点样蛋白质;
LPS(lipopolysaccharide): 脂多糖;
NAIP(neuronal apoptosis inhibitory protein): 神经细胞凋亡抑制蛋白;
NLRC4: nucleotide-binding domain, leucine-rich repeat-containing protein (NLR) family CARD domain-containing protein 4NLRP3: NACHT, LRR and PYD domains-containing protein 3;
ROS(reactive oxygen species): 活性氧;
T3SS(type 3 secretion system): 3 型分泌系统。
03
炎症小体和其相关的分子在肠道细胞和免疫细胞中促进杀死和清除胃肠道病原菌
a | 炎症小体通过诱导 IL-1β 和 IL-18 的分泌和细胞焦亡介导保护宿主免受革兰氏阴性菌侵袭[1-8]。NLRP6 和 NLRP12 可以负向调节炎症[9-12]。NLRP6 在杯状细胞(goblet cells)中对 Toll 样受体诱导的自噬作出响应从而介导粘液的分泌[13]。RNA 结合的 DEAH 盒蛋白9(RNA-bound DEAH box protein 9, DHX9)与 NLRP9b 相互作用,诱导炎症小体复合物的组装[14]。NLRP6–DHX15 复合物结合病毒 RNA 并且诱导 1 型和 3 型干扰素的产生[15]。
b | 肠道巨噬细胞可以区分病原菌和共生菌[16]。
c | Caspase 1,caspase 8 或者 caspase 11 的激活可导致细胞死亡,进而促使肠上皮中被感染的上皮细胞被清除和排出[17-19]。
d | 炎症小体可以通过抑制细菌摄入减少细菌负荷,这会限制巨噬细胞的运动和刚度(stiffness)并且促进活性氧的产生(ROS) [20]。焦亡的巨噬细胞释放完整的细菌或者被截留在细胞内陷阱的细菌[21],这些释放的实体会进一步被中性粒细胞吞噬[3,22] 。
TIPs:
pyroptosis:细胞焦亡,是一种新的程序性细胞死亡方式,其特征为依赖于半胱天冬酶-1(caspase-1),并伴有大量促炎症因子的释放。细胞焦亡的形态学特征、发生及调控机制等均不同于凋亡、坏死等其他细胞死亡方式01;
Caspase:半胱天冬酶;
ASC, apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (CARD) :含有半胱天冬酶激活和募集结构域的凋亡相关斑点样蛋白;
dsRNA, double-stranded RNA:双链 RNA ;
EMCV, encephalomyocarditis virus:脑心肌炎病毒;
KC,keratinocyte chemoattractant:角质形成细胞化学引诱物(也称为CXCL1);
MAVS, mitochondrial antiviral-signalling protein:线粒体抗病毒信号蛋白;
NAIP, neuronal apoptosis inhibitory protein:神经细胞凋亡抑制蛋白;
NF-κB, nuclear factor-κB:核因子-κB;
NLRC4, nucleotide-binding domain, leucine-rich repeat-containing protein (NLR) family CARD domain-containing protein 4 :核苷酸结合结构域,富含亮氨酸重复序列的蛋白(NLR)家族 CARD 结构域蛋白4(NLRC4);
ssRNA, single-stranded RNA :单链RNA。
04
炎症小体-微生物群轴调节肠道炎症和癌症的发展
a | 诸如氧化偶氮甲烷(AOM)和葡聚糖硫酸钠(DSS)等致瘤因素会引起损伤,导致危险相关分子模式(DAMPs)的释放。同时,细菌可侵入肠细胞并将病原体相关分子模式(PAMPs)引入宿主细胞。炎症小体可以感知DAMPs和PAMPs[1-6] 。IL-18促进可溶性 IL-22结合蛋白(IL-22BP)的下调,可溶性IL-22结合蛋白可以控制肠道中IL-22抑制炎症或诱导肠道肿瘤发生的能力[7]。
b | 核苷酸结合结构域,富含亮氨酸重复序列的蛋白(NLR)家族CARD结构域蛋白 4(NLRC4)和神经细胞凋亡抑制蛋白(NAIPs)可阻断细胞增殖和肿瘤发生[8,9]。
c | DNA依懒性蛋白激酶(DNA-PK)通过激活AKT(activate RAC serine/threonine-protein kinase) 和转录因子MYC诱导结直肠肿瘤发生[10,11]。该过程会被黑色素瘤缺乏因子 2(AIM2)抑制。AIM2也可以诱导肠道上皮细胞产生抗菌肽(AMPs)以调节肠道微生物群[12,13]。研究表明NLRC3具有类似的负向调节作用[14]。
d | NLRP6和NLRP12在胃肠道感染,急性结肠炎和结直肠癌的发病机制中也发挥作用[15-24]。
问号表示未知的调节物质。
TIPs:
NLRC4, Nucleotide-binding domain, leucine-rich repeat-containing protein (NLR) family CARD domain-containing protein 4 (NLRC4): 核苷酸结合结构域,富含亮氨酸重复序列的蛋白(NLR)家族 CARD 结构域蛋白4;
NAIPs, neuronal apoptosis inhibitory proteins:神经细胞凋亡抑制蛋白;
GFR:生长因子受体;
mTOR:雷帕霉素的机制目标;
NLRP(NACHT, LRR and PYD domains-containing protein)含 NACHT,LRR和PYD结构域的蛋白质;
PI3Ks:磷酸肌醇3-激酶;
ROS:活性氧;
STAT3:信号转导和转录激活因子3;
T3SS:3型分泌系统;
TLR:Toll样受体。
参考文献
-01-
1. Poyet, J. L. et al. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J. Biol. Chem. 276, 28309–28313 (2001).
2. Van Opdenbosch, N. et al. Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation. Nat. Commun. 5, 3209 (2014).
3. Guey, B., Bodnar, M., Manie, S. N., Tardivel, A. & Petrilli, V. Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function. Proc. Natl Acad. Sci. USA 111, 17254–17259
4. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signaling. Nature 526, 666–671 (2015).
5. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).
6. He, W. T. et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res. 25, 1285–1298 (2015).
7. Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).
8. Aglietti, R. A. et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc. Natl Acad. Sci. USA 113, 7858–7863 (2016).
9. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).
10. Sborgi, L. et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 35, 1766–1778 (2016).
11. Chen, X. et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 26, 1007–1020 (2016).
12. Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011). This study describes the existence of a non-canonical
13. http://news.bioon.com/article/6710531.html
14. Man S M. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis[J]. Nature Reviews Gastroenterology & Hepatology, 2018: 1.
-02-
1. Man, S. M. & Kanneganti, T. D. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat. Rev. Immunol. 16, 7–21 (2016).
2. Latz, E., Xiao, T. S. & Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397–411 (2013).
3. Man S M. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis[J]. Nature Reviews Gastroenterology & Hepatology, 2018: 1.
-03-
1. Broz, P. et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 207, 1745–1755 (2010).
2. Franklin, B. S. et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat. Immunol. 15, 727–737 (2014).
3. Miao, E. A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11, 1136–1142 (2010).
4. Franchi, L. et al. NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol. 13, 449–456 (2012).
5. Liu, Z. et al. Role of inflammasomes in host defense against Citrobacter rodentium infection. J. Biol. Chem. 287, 16955–16964 (2012).
6. Nordlander, S., Pott, J. & Maloy, K. J. NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen. Mucosal Immunol. 7, 775–785 (2014).
7. Lara-Tejero, M. et al. Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J. Exp. Med. 203, 1407–1412 (2006).
8. Song-Zhao, G. X. et al. Nlrp3 activation in the intestinal epithelium protects against a mucosal pathogen. Mucosal Immunol. 7, 763–774 (2014).
9. Anand, P. K. et al. NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 488, 389–393 (2012).
10. Zaki, M. H., Man, S. M., Vogel, P., Lamkanfi, M. & Kanneganti, T. D. Salmonella exploits NLRP12- dependent innate immune signaling to suppress host defenses during infection. Proc. Natl Acad. Sci. USA 111, 385–390 (2014).
11. Allen, I. C. et al. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling. Immunity 36, 742–754 (2012).
12. Zaki, M. H. et al. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell 20, 649–660 (2011). References 256 and 257 reveal an important role for NLRP12 in colitis and colitis-associated colorectal cancer in mice.
13. Wlodarska, M. et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156, 1045–1059 (2014).
14. Zhu, S. et al. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature 546, 667–670 (2017). This study reports the existence of an NLRP9b inflammasome complex, which is expressed specifically in mouse intestinal cells and mediates cytosolic recognition of rotavirus.
15. Wang, P. et al. Nlrp6 regulates intestinal antiviral innate immunity. Science 350, 826–830 (2015). 165
16. Franchi, L. et al. NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol. 13, 449–456 (2012).
17. Sellin, M. E. et al. Epithelium-Intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe 16, 237–248 (2014)
18. Rauch, I. et al. NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8. Immunity 46, 649–659 (2017).
19. Knodler, L. A. et al. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 16, 249–256 (2014). References 93, 94 and 104 highlight an expulsion mechanism induced by the inflammasome to remove an entire infected host cell from the intestinal epithelium.
20. Man, S. M. et al. Actin polymerization as a key innate immune effector mechanism to control Salmonella infection. Proc. Natl Acad. Sci. USA 111, 17588–17593 (2014).
21. Jorgensen, I., Zhang, Y., Krantz, B. A. & Miao, E. A. Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis. J. Exp. Med. 213, 2113–2128 (2016).
22. Chen, K. W. et al. The neutrophil NLRC4 inflammasome selectively promotes IL-1beta maturation without pyroptosis during acute Salmonella challenge. Cell Rep. 8, 570–582 (2014).
23. Man S M. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis[J]. Nature Reviews Gastroenterology & Hepatology, 2018: 1.
-04-
1. Zaki, M. H., Vogel, P., Body-Malapel, M., Lamkanfi, M. & Kanneganti, T. D. IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J. Immunol. 185, 4912–4920 (2010).
2. Allen, I. C. et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J. Exp. Med. 207, 1045–1056 (2010).
3. Zaki, M. H. et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32, 379–391 (2010).
4. Dupaul-Chicoine, J. et al. Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity 32, 367–378 (2010).
5. Blazejewski, A. J. et al. Microbiota normalization reveals that canonical caspase-1 activation exacerbates chemically induced intestinal inflammation. Cell Rep. 19, 2319–2330 (2017)
6. Williams, T. M. et al. The NLRP1 inflammasome attenuates colitis and colitis-associated tumorigenesis. J. Immunol. 194, 3369–3380 (2015).
7. Huber, S. et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491, 259–263 (2012).
8. Hu, B. et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc. Natl Acad. Sci. USA 107, 21635–21640 (2010).
9. Allam, R. et al. Epithelial NAIPs protect against colonic tumorigenesis. J. Exp. Med. 212, 369–383 (2015).
10. Man, S. M. et al. Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer. Cell 162, 45–58 (2015).
11. Wilson, J. E. et al. Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt. Nat. Med. 21, 906–913 (2015). References 205 and 206 identify a role for the DNA sensor AIM2 in preventing colorectal cancer in mice.
12. Hu, S. et al. The DNA Sensor AIM2 Maintains Intestinal homeostasis via regulation of epithelial antimicrobial host defense. Cell Rep. 13, 1922–1936 (2015).
13. Ratsimandresy, R. A., Indramohan, M., Dorfleutner, A. & Stehlik, C. The AIM2 inflammasome is a central regulator of intestinal homeostasis through the IL-18/IL-22/STAT3 pathway. Cell. Mol. Immunol. 14, 127–142 (2017).
14. Karki et al. NLRC3 is an inhibitory sensor of PI3K–mTOR pathways in cancer. Nature 540, 583–587 (2016).
15. Anand, P. K. et al. NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 488, 389–393 (2012).
16. Zaki, M. H., Man, S. M., Vogel, P., Lamkanfi, M. & Kanneganti, T. D. Salmonella exploits NLRP12- dependent innate immune signaling to suppress host defenses during infection. Proc. Natl Acad. Sci. USA 111, 385–390 (2014).
17. Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011).
18. Normand, S. et al. Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc. Natl Acad. Sci. USA 108, 9601–9606 (2011).
19. Chen, G. Y., Liu, M., Wang, F., Bertin, J. & Nunez, G. A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J. Immunol. 186, 7187–7194 (2011).
20. Birchenough, G. M., Nystrom, E. E., Johansson, M. E. & Hansson, G. C. A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science 352, 1535–1542 (2016).
21. Chen, L. et al. NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth. Nat. Immunol. 18, 541–551 (2017).
22. Levy, M. et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163, 1428–1443 (2015).
23. Allen, I. C. et al. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling. Immunity 36, 742–754 (2012).
24. Zaki, M. H. et al. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell 20, 649–660 (2011).
25. Man S M. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis[J]. Nature Reviews Gastroenterology & Hepatology, 2018: 1.
本文系菌探Momics(ID:Momics)原创,欢迎个人转发分享。其他任何媒体、网站如需转载,须在正文前注明来源菌探Momics。
封面、文章图片均源于英文原文
菌探Momics
一起探索微生物的奥秘
点击“阅读原文”,阅读英文原文