其他
【直播】【国际青年学者科学论坛】加州大学伯克利分校董玉龙:基于数值线性代数的量子基准测试
直播二维码
本次论坛由蔻享学术主办,于2021年11月4日10:00开始,授权蔻享学术进行网络直播。
基于数值线性代数的量子基准测试
报告人
董玉龙 | 加州大学伯克利分校
主持人
宋 飞 | 清华大学
时间
2021年11月4日10:00
报告摘要
Recently, quantum supremacy experiments (by Google in 2019 and by USTC in 2020) have brought quantum computation to the attention of the public and diverse scientific researchers. Quantum computers hold the promise of dramatically accelerating calculations in a wide range of fields. Recent progress in quantum algorithms significantly expands the potential range of applications of quantum computers, especially in numerical linear algebra. As near-term quantum devices become increasingly accessible, the need for holistic benchmarking of such devices is also rapidly growing. While generic benchmarks certainly provide important characteristics of the quantum devices themselves, we are ultimately interested in applying the devices to carry out specific computational tasks. In this talk, I will discuss how to solve numerical linear algebra problems using a quantum computer with a simple toy example of a 2-by-2 matrix. Then, I will propose an input model generating random matrices on a quantum computer. Furthermore, I will propose a quantum LINPACK benchmark, and quantum Hamiltonian simulation benchmark for early fault-tolerant quantum computers, which are whole machine, application based, and scalable.
近年来,谷歌和中国科大的量子霸权实验将量子计算带入公众和各学科研究者的视野。量子计算具有在诸多领域提供高效计算资源的潜力。最近几年的研究更将量子计算机的应用领域显著扩大,尤其是在数值线性代数中的应用。随着近期量子计算机越来越多,对量子计算机进行整机计算性能评估也越来越被需要。尽管一般的基准测试方法能够刻画量子计算机的性能,我们最终关心的是将量子计算机用于特定的计算问题。在这个报告中,我将首先通过一个2乘2矩阵的简单例子介绍量子计算机是如何求解数值线性代数问题。之后,我将提出一个能够在量子计算机上生成随机矩阵的输入模型。更进一步,我将提出一个量子LINPACK基准测试和量子哈密顿量模拟基准测试。这些基准测试是可以用于以后更加准确的量子计算机的整机,基于数值线性代数应用,和可扩展的方法。
报告人介绍
图 | 董玉龙
Yulong Dong received his B.S. degree from the Department of Chemical Physics in University of Science and Technology of China (USTC) in 2018. He currently pursues the Ph.D. degree in Applied Mathematics in the Department of Mathematics in University of California, Berkeley. His research interest lies broadly in quantum algorithms, numerical linear algebra, applied and numerical analysis of optimization and control theory.
董玉龙,于2018年毕业于中国科大化学物理系获理学学士学位。他现在是加州大学伯克分校数学系应用数学专业的在读博士生。他的研究兴趣集中在量子算法,数值线性代数,应用优化与其中的数值分析,以及控制理论。
国际青年学者科学论坛专题直播&回放链接:
https://www.koushare.com/topicIndex/i/iyscsw
海报:黄琦
欢迎大家提供各类学术会议或学术报告信息,以便广大科研人员参与交流学习。