报告题目:Silicon photonics quantum technologies
王剑威 研究员
北京大学
王剑威,北京大学物理学院研究员,获海外高层次青年人才项目支持。研究领域为集成光量子芯片物理、技术与应用,包括关键集成量子器件与硬件、大规模硅基集成光量子芯片、光子-离子/原子混合集成芯片、离散-连续混合量子芯片、复杂量子纠缠体系制备与调控和量子算法物理实现等,并开展量子计算、量子模拟、量子信息处理和量子通信等前沿应用的研究。在包括Science(2篇) 、Nature Physics (4篇)、Nature Photonics (3篇)、Nature Review Physics、Science Advances、Nature Communications (2篇)、PRL和Optica等在内的国际学术期刊上发表论文30余篇。担任Science、Nature Photonics、Nature Commun.、Light、PRL、PNAS等杂志特邀审稿人。承担科技部重点研发计划项目、国家自然基金面上项目、北京市自然基金重点项目、广东省重点研发等项目或课题负责人。
报告摘要:On-chip generating, controlling and detecting quantum states of light with large-scale silicon-photonic circuits opens the way to realizing advanced quantum technologies. In this talk we present recent progress in silicon-photonic quantum devices and circuits for quantum computing.
报告题目:On-chip single-photon quantum technology
马小松 教授
南京大学
马小松,南京大学物理学院教授,博士生导师。2010年毕业于奥地利维也纳大学物理系,获得博士学位。 其后在维也纳大学进行博士后研究工作,致力于长距离量子通信实验,代表工作包含143公里量子隐形态传送和延迟量子纠缠交换等。2012年入选“欧盟玛丽居里学者”人才支持计划,前往美国耶鲁大学进行集成量子光学芯片方向的研究。2015年介入南京大学物理学院。迄今为止,马小松教授作为第一作者和通讯作者的代表工作包括 Nature一篇,Nature Physics三篇, PNAS一篇等20多篇学术论文等。受邀担任Nature Physics, Nature Photonics,Nature Communications和Physical Review Letters等期刊审稿人。报告摘要:Quantum technology employs the ‘spooky’ phenomena of quantum physics such as superposition, randomness and entanglement to process information in a novel way. Quantum photonics provides a promising path for both exploring fundamental physics and delivering quantum-enhanced technologies. In this talk, I will introduce our recent work on developing functional nodes for quantum information processing based on integrated optics architecture, including high-quality entangled photon-pair source, precise control of photonic qudits and high-speed single-photon detectors.
强晓刚 研究员
军事科学院国防科技创新研究院
强晓刚,英国布里斯托大学博士,军事科学院国防科技创新研究院研究员,研究生导师,入选国防科技卓越青年科学基金、国家海外高层次青年人才项目、国家特殊领域青年人才托举工程等项目资助。2009年本科毕业于北京大学电子学系,2012年硕士毕业于国防科技大学计算机学院,2017年获得英国布里斯托大学物理博士学位。长期从事集成光学量子计算领域研究,聚焦大规模硅基光量子计算芯片技术,发表SCI论文20余篇,包括以第一/通信作者在Nature Photonics、Science Advances、Nature Communications等国际期刊发表论文,代表性成果包括国际首个通用两比特硅基光量子计算芯片、图论问题专用可编程硅基光量子计算芯片等。报告摘要:Photons have been considered as a promising candidate for implementing quantum computation and quantum simulation, owing to their properties of long coherence time, ease of manipulation, multiple degrees of freedom and working at room temperature. Integrated quantum photonic techniques are an engineering solution proposed for robust and exquisite control of photonic quantum information by allowing generation, manipulation, and detection of photons on a single chip. Silicon photonics holds greater capability for large-scale photonic circuitry, because of their strong third-order nonlinearity, high component density and CMOS-compatibility, which thus presents an ideal platform for implementing quantum computation and quantum simulation applications. Here we present our recent works in silicon quantum photonics, for implementing various quantum circuit model algorithms and simulating multiple-particle quantum walks and their applications. Our work shows that future iterations of silicon photonics open the way to large-scale photonic quantum processors for applications of practical interests.