查看原文
其他

【直播】【青年科学半月谈】Simulate Time-integrated Coarse-grained Molecular……

KouShare 蔻享学术 2022-09-24





直播信息

报告题目

Simulate Time-integrated Coarse-grained Molecular Dynamics with Geometric Machine Learning

报告人

Xiang Fu(Massachusetts Institute of Technology)

报告时间

2022年7月7日(周四) 10:00

主办方

蔻享学术

直播二维码


报告人介绍

Xiang Fu is a third-year PhD student in computer science at MIT, working with Tommi Jaakkola and Pulkit Agrawal. His is interested in learning dynamical models and generative models. His past projects include learning to simulate coarse-grained molecular dynamics, crystal generative models, molecule design, and reinforcement learning. His research aims to develop principled methodology for ML simulator / generative models, with application in inverse design of materials, drugs, and proteins.


报告摘要

Molecular dynamics (MD) simulation is the workhorse of various scientific domains but is limited by high computational cost. Learning-based force fields have made major progress in accelerating ab-initio MD simulation but are still not fast enough for many real-world applications that require long-time MD simulation. In this paper, we adopt a different machine learning approach where we coarse-grain a physical system using graph clustering and model the system evolution with a very large time-integration step using graph neural networks. A novel score-based GNN refinement module resolves the long-standing challenge of long-time simulation instability. Despite only being trained with short MD trajectory data, our learned simulator can generalize to unseen novel systems, and simulate for much longer than the training trajectories. Properties requiring 10-100 ns level long-time dynamics can be accurately recovered at several orders of magnitude higher speed than classical force fields. We demonstrate the effectiveness of our method on two realistic complex systems: (1) single-chain coarse-grained polymers in implicit solvent; (2) multi-component Li-ion polymer electrolyte systems. Project page: https://xiangfu.co/mlcgmd


青年科学半月谈聚焦基础科学相关前沿研究,是促进海内外交叉学科青年学者学术交流的讨论会。在疫情流行的大背景下,我们旨在建立并提供一个自由、开放并充满活力的在线交流平台,以促进学科发展。欢迎广大的青年科学工作者(特别是在读研究生)来参加、交流、报告!


论坛特色

论坛欢迎在读研究生以及青年科研工作者来系统性地分享自己的工作。

区别于一般的会议报告,我们在报告时长和篇幅上没有太多限制,并希望通过该论坛可以看到青年科研工作者的“第一视角”,进而展开更加有效且深入的讨论。

(论坛无商业广告、无需提前报名注册、即点即听、后有回放可供反复学习交流、报告视频有正式doi索引)


扩展阅读

 

1.【青年科学半月谈】基于涡旋光子的拓扑量子模拟

2.【青年科学半月谈】混合整数规划基础及在工程科学中的应用

3.【青年科学半月谈】微纳中寸的造型在清洁水资源及能源应用

4.【青年科学半月谈】极端高温下的核磁共振...

5.【青年科学半月谈】设计二维磁性材料实现...

编辑:王亚琨

蔻享学术平台,国内领先的一站式科学资源共享平台,依托国内外一流科研院所、高等院校和企业的科研力量,聚焦前沿科学,以优化科研创新环境、传播和服务科学、促进学科交叉融合为宗旨,打造优质学术资源的共享数据平台。



版权说明:未经授权严禁任何形式的媒体转载和摘编,并且严禁转载至微信以外的平台!


原创文章首发于蔻享学术,仅代表作者观点,不代表蔻享学术立场。

转载请在『蔻享学术』公众号后台留言。


点击阅读原文~发现惊喜!

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存