查看原文
其他

【直播】北大-上交对撞机物理联合青年论坛(京沪云坛):Dr. Miaoyuan Liu 学术报告

KouShare 蔻享学术 2023-03-11





直播信息

报告题目

北大-上交对撞机物理联合青年论坛(京沪云坛):Artificial Intelligence Accelerated Discoveries at the Large Hadron Collider

报告人(单位)

Dr. Miaoyuan Liu

报告时间

2022年7月22日(周五)19:00

主办方

上海交通大学物理与天文学院

李政道研究所

北京大学物理学院

高能物理研究中心

直播二维码


直播海报


报告人介绍

Dr. Miaoyuan Liu completed her PhD at Duke University in 2015, her thesis work is on  establishing the first evidence of triboson processes with W boson produced associated with  two photons using ATLAS data. As a postdoc at Fermilab from 2015 to 2020, she performed  searches for three heavy gauge bosons events that led to the first observation of the VVV  process and evidences of WWW/WWZ with CMS 13 TeV proton collision data collected during  LHC Run-2 operation. she also searched for SUSY particles such stop  Pairs and electroweakinos using CMS early Run-2 data. She led the  commissioning and testing of the CMS phase 1 forward pixel  detector pre/post installation at Fermilab and is continuing to contribute to the cms phase 2 outer tracker upgrade as an assistant  professor at Purdue University starting in 2020. Her recent work  focuses on improving CMS physics sensitivities with machine  learning and heterogeneous computing hardwares. 


报告摘要

Searches for new physics beyond the Standard Model at the Large Hadron Collider (LHC)  require paradigm shifts in search strategies and advanced instrumentation. To harness the  Proton-Proton collisions at the highest energy of unprecedented rate, innovative approaches  must be explored and recent development in artificial intelligence (AI) offers such  opportunities. In my talk, I will introduce essential elements in boosting the discovery  potential with accelerated AI: science drivers at the LHC, interplay between Machine Learning  (ML) and domain knowledge, as well as ML-specific compute systems. I will highlight a few  studies in ML algorithms, in collaboration with experts in Purdue CS, that enable important  science topics at the LHC. I will also discuss the challenges of realizing ML in scientific  instruments and solutions explored in my previous work. At the end of my talk, I will introduce  the multidisciplinary NSF A3D3 (accelerated AI algorithms for data driven discovery) HDR  institution and how these explorations can benefit science domains broadly.


扩展阅读

 

1.【北大-上交对撞机物理联合青年论坛(京沪云坛)】Dr. Teng Jian Khoo 学术报告

2.【北大-上交对撞机物理联合青年论坛(京沪云坛)】ATLAS 实验上的硅径迹探测器升级

3.【北大-上交对撞机物理联合青年论坛(京沪云坛)】Dr. Rui Zhang 学术报告

4.【李政道研究所-粒子核物理研究所特别演讲】Prof. Dr. Matthias Schott

5. 诺奖得主Wilczek科普专栏

编辑:吴良秀

蔻享学术平台,国内领先的一站式科学资源共享平台,依托国内外一流科研院所、高等院校和企业的科研力量,聚焦前沿科学,以优化科研创新环境、传播和服务科学、促进学科交叉融合为宗旨,打造优质学术资源的共享数据平台。



版权说明:未经授权严禁任何形式的媒体转载和摘编,并且严禁转载至微信以外的平台!


原创文章首发于蔻享学术,仅代表作者观点,不代表蔻享学术立场。

转载请在『蔻享学术』公众号后台留言。


点击阅读原文~发现惊喜!

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存