查看原文
其他

【直播】合成生物学系列讲座学术报告

KouShare 蔻享学术 2022-09-24



活动名称:

合成生物学系列讲座学术报告

活动时间

2022年8月22日(周一) 09:30

报告嘉宾:

刘海燕 教授

周耀旗 研究员

主持人:

周佳海 研究员

主办单位:

中科院深圳先进技术研究院

深圳合成生物学创新研究院


直播通道

蔻享学术直播间

识别二维码,即可观看直播。




报告人介绍


报告题目:Data-driven de novo protein design with neural networks and deep learning

刘海燕 教授

中国科学技术大学


刘海燕,中国科学技术大学生命科学与医学部教授。毕业于中国科学技术大学,1990年获学士学位,1996年获博士学位。曾在瑞士苏黎世高等理工学院物理化学实验室学习,在美国杜克大学和北卡罗莱纳大学教堂山分校从事博士后研究。2001年起任职于中国科学技术大学,同年获国家杰出青年资助。主要研究方向为蛋白质设计方法及其应用、蛋白质空间结构和动力学的计算机模拟方法与应用。建立并实验验证了蛋白质序列从头设计的统计能量方法ABACUS和深度学习方法ABACUS-R,以及基于神经网络模型的蛋白质结构从头设计方法SCUBA;发展了酶反应自由能面计算、集合自由度增强采样、单参考态自由能计算等模拟技术。已发表研究论文百余篇,包括在Nature及其子刊、JACS、PRL等高水平杂志发表。


报告简介


Computational protein design holds great promise for various applications from the development of novel therapeutics to the invention of new bio-catalysts. Recently, data-driven computational approaches to protein design have taken shape as being more robust and more efficient than conventional physics-based methods. I will present two data-driven models: one named SCUBA, which is for designing protein backbones using neural network energy functions, and the other named ABACUS-R, which is for designing amino acid sequences for given backbones using deep learning. The SCUBA energy function is composed of neural networks (NNs), which have been learnt to faithfully capture the complex, high-order correlations in the high-dimensional space of backbone conformations. Backbone structures of high designability—meaning that a substantial number of amino acid sequences autonomously fold into these structures—could be obtained (through sampling/optimization) as low-lying minima on the SCUBA energy landscape. We solved several crystal structures of SCUBA-designed de novo proteins. Some of these proteins are of overall architectures not yet observed in nature, which exemplifies that SCUBA can facilitate far-reaching exploration of the space of designable backbones. In the ABACUS-R method, an encoder-decoder network trained with a multi-task learning strategy is used to predict the sidechain type of a central residue from its 3D local environment. Iterative application of this encoder-decoder to different central residues of a designable target backbone leads to self-consistent overall sequences. In wet experiments examining de novo sequences designed on several natural backbones, ABACUS-R surpassed state-of-the-art energy function-based methods in both success rate and design precision.


报告人介绍


报告题目:蛋白质设计--能量函数和AI

周耀旗 研究员

中国科学技术大学


周耀旗,研究员。中国科学技术大学学士,美国纽约石溪大学博士,哈佛大学博士后。任纽约布法罗大学助理教授、终身副教授,印第安纳普度大学信息学院和医学院终身正教授,澳大利亚格里菲斯大学糖组学研究所正教授。2021年起作为资深研究员全职加入广东省深圳湾实验室系统与物理生物学所。


报告简介


设计新蛋白质、执行新功能是合成生物学的一个重要课题,尽管目前取得了部分成功的研究,但从头蛋白质设计的成功率仍然很低,其中的难点并没有真正得到解决,而成功率低的一个主要原因是目前缺乏准确的能量函数来描述蛋白质链中氨基酸残基之间和溶剂介导的相互作用。在本次报告中,我将重点讨论与能量函数相关的进展。



推荐阅读

【药学学报】生物合成专场 >>
mLife Forum:原核细胞分裂及其调控:从遗传学到超分辨荧光成像细胞生物学 >>
【西湖实验室】《细胞》系列研讨会——蛋白质设计与合成生物学 >>
2022年知识产权宣传周合成生物重大科技基础设施“沿途下蛋” ---全链条科技创新布局分享会 >>

编辑:王亚琨

蔻享学术 平台


蔻享学术平台,国内领先的一站式科学资源共享平台,依托国内外一流科研院所、高等院校和企业的科研力量,聚焦前沿科学,以优化科研创新环境、传播和服务科学、促进学科交叉融合为宗旨,打造优质学术资源的共享数据平台。

识别二维码,

下载 蔻享APP  查看最新资源数据。


点击阅读原文,查看更多精彩报告!

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存