查看原文
其他

【直播】【青年科学半月谈】机器学习贝叶斯力场及量化不确定性的分子动力学模拟

KouShare 蔻享学术 2023-03-06



活动名称:

机器学习贝叶斯力场及量化不确定性的分子动力学模拟

活动时间

2023年1月12日(周四)10:00

报告嘉宾:

谢玙 哈佛大学

主办单位:

蔻享学术

直播通道

蔻享学术直播间

识别二维码,即可观看直播。


报告人介绍


谢玙 哈佛大学


Yu Xie is a PhD candidate in Prof. Boris Kozinsky’s group at Harvard University. Her research focuses on the development of machine learning Bayesian force fields for active learning and large-scale molecular dynamics simulations. She is also working on the applications of machine learning force field simulations for phase transition and catalysis systems.


报告简介


In this work, we present an efficient machine learning interatomic force field model and a Bayesian active learning workflow, FLARE. Specifically, a many-body force field is constructed from a sparse Gaussian process (SGP) regression model based on atomic cluster expansion descriptors. Utilizing the uncertainty of SGP as acquisition criteria, we propose an autonomous on-the-fly learning for highly efficient data collection from first principles and training of the model. To circumvent the high computational cost of the SGP forces and uncertainty calculation, we formulate a high-performance mapping and demonstrate a speedup of several orders of magnitude. The GPU acceleration that we implement enables micron-scale reactive molecular dynamics simulations of heterogeneous catalysis systems. We also demonstrate the applications of FLARE on phase transition, nanoparticles, and thermal transport.




推荐阅读

【青年科学半月谈】快速物理模拟中的降维方法>>

【青年科学半月谈】德国马普光科学研究所顾雪梅 学术报告>>

【青年科学半月谈】Simultaneous State Estimation and Dynamics……>>

【青年科学半月谈】Interaction-Driven Metal-Insulator Transition……>>

【青年科学半月谈】人工智能的产业化——人工智能科研的互补视角>>

编辑:吴良秀

蔻享学术 平台


蔻享学术平台,国内领先的一站式科学资源共享平台,依托国内外一流科研院所、高等院校和企业的科研力量,聚焦前沿科学,以优化科研创新环境、传播和服务科学、促进学科交叉融合为宗旨,打造优质学术资源的共享数据平台。

识别二维码,

下载 蔻享APP  查看最新资源数据。


点击阅读原文,查看更多精彩报告!

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存