【直播】【青年科学半月谈】机器学习贝叶斯力场及量化不确定性的分子动力学模拟
活动名称:
机器学习贝叶斯力场及量化不确定性的分子动力学模拟
活动时间:
2023年1月12日(周四)10:00
报告嘉宾:
谢玙 哈佛大学
主办单位:
蔻享学术
直播通道
蔻享学术直播间 |
报告人介绍
谢玙 哈佛大学
报告简介
In this work, we present an efficient machine learning interatomic force field model and a Bayesian active learning workflow, FLARE. Specifically, a many-body force field is constructed from a sparse Gaussian process (SGP) regression model based on atomic cluster expansion descriptors. Utilizing the uncertainty of SGP as acquisition criteria, we propose an autonomous on-the-fly learning for highly efficient data collection from first principles and training of the model. To circumvent the high computational cost of the SGP forces and uncertainty calculation, we formulate a high-performance mapping and demonstrate a speedup of several orders of magnitude. The GPU acceleration that we implement enables micron-scale reactive molecular dynamics simulations of heterogeneous catalysis systems. We also demonstrate the applications of FLARE on phase transition, nanoparticles, and thermal transport.
推荐阅读
【青年科学半月谈】Simultaneous State Estimation and Dynamics……>>
编辑:吴良秀
蔻享学术 平台介绍
蔻享学术平台,国内领先的一站式科学资源共享平台,依托国内外一流科研院所、高等院校和企业的科研力量,聚焦前沿科学,以优化科研创新环境、传播和服务科学、促进学科交叉融合为宗旨,打造优质学术资源的共享数据平台。
识别二维码,
下载 蔻享APP 查看最新资源数据。
点击阅读原文,查看更多精彩报告!