查看原文
其他

【诺奖得主Wilczek科普专栏】亚原子减肥指南

KouShare 蔻享学术 2023-03-06


温馨提示:文章内含中文版本、英文版本,满足更多读者需求哟!

声明:本专栏纸质版每月在《环球科学》杂志刊登,网络电子版经作者授权由蔻享学术在微信公众号上进行网络首发。


Frank Wilczek

弗兰克·维尔切克是麻省理工学院物理学教授、量子色动力学的奠基人之一。因发现了量子色动力学的渐近自由现象,他在2004年获得了诺贝尔物理学奖。



作者 | Frank Wilczek

翻译 | 胡风、梁丁当

中文版




人的体重主要来源于胶子与夸克的高能运动

新年伊始,很多人下决心要减肥。他们经常问这样的一个问题:这些重量到底哪儿来的?今天,我就来告诉你答案。

爱因斯坦方程E=mc²是物理学中最著名的方程。它告诉我们:能量等于质量乘以光速的平方。也就是说,质量可以转化成能量。一个有名的例子是:在太阳等恒星中,以及核反应堆和核武器里,某些原子核转变成质量较小的原子核,并释放出能量;而这些能量正好对应着减少的质量。

我们也可以换一个角度,把爱因斯坦方程写成m=E/c²。这意味着质量来自于能量。大部分质量也确实如此!这一发现是现代物理学的一大胜利。

我们知道,物质是由原子构成的。原子的质量几乎全部集中在原子核内的质子与中子上。而质子和中子是由夸克和胶子所构成的。可是,胶子本身是没有质量的,夸克(上夸克或者下夸克)的质量则大约只有质子的1%。那么,剩余的大部分质量是从哪儿来的呢?

构成质子的夸克与胶子运动非常迅速。这意味着质子蕴含着极高的动能。根据m=E/c², 正是这部分能量导致了质子的质量。

这个结论太神奇了,我们凭什么相信它是正确的呢?除了质子和中子,夸克和胶子还可以构成介子和重子。大部分介子和重子都不稳定。但有少数介子和重子,它们具有较长的寿命,可以被我们在实验中观测到,并测量其重量。当然,我们的测量方法不是使用浴室里的体重秤,而是通过监测介子和重子所衰变成的粒子的质量与运动,再根据相对论进行换算得到。

与实验平行,我们有一个可以精确描述夸克与胶子相互作用的数学理论。它被称为量子色动力学,简称QCD。该理论已经被许多实验所验证。求解QCD方程很有挑战性。但是在超级计算机的帮助下,聪明的科学家们已经能够游刃有余地使用它。利用QCD方程,科学家们能够找出类似于质子和中子这样的稳定粒子,计算出每种基本粒子所蕴含的能量,再根据m=E/c²换算出相应的质量。而理论与实验的完美一致,极大地激发了人们的信心。

如果你正在为自己的体重感到烦恼,那么当你知道这些重量反应的不过是你体内被压抑的能量的时候,或许会好受些。不过也说不定。毕竟这些能量无法通过运动或者节食消耗掉。我们没有亚原子减肥食谱。

唯一行之有效的减肥方法仍然是:消耗的质子与中子要超出对它们的摄入。显然,节食可以减少摄入。而运动,通过加速燃烧这些燃料,可以增加消耗。祝大家减肥成功!


英文版


The furious movements of particles called gluons and quarks are responsible for most of your body’s mass

With the onset of a new year, many people resolve to lose some weight. They often ask: Where did all that weight come from? Herewith, the answer.

Albert Einstein’s E=mc² is the most famous equation in physics. It says that energy (E) is equal to mass (m) multiplied by the square of the speed of light (c²). Thus, mass can be converted into energy. Famously, that concept is realized in the sun and other stars as well as in nuclear reactors and weapons, wherein certain atomic nuclei morph into others with less mass, with the difference liberated as energy.

But we can also read E=mc² the other way, as m=E/c², to suggest that mass originates in energy. And most of it does! That revelation is a great triumph of modern physics.

Let’s break it down. Almost all the mass in atoms, and in ordinary matter generally, is supplied by the protons and neutrons within atomic nuclei. Protons and neutrons are themselves made from particles called quarks and gluons. But those quarks and gluons have very little mass of their own: Gluons have zero, and the relevant “up” and “down” quarks have only about 1% of a proton’s mass. So where does the rest come from?

Inside a proton, its constituent quarks and gluons move around rapidly. All that motion means that the proton is a bundle of kinetic energy. And it’s precisely that energy of motion that supplies the proton’s mass, according to m=E/c².

How can we be confident of that marvelous conclusion? Quarks and gluons can move around in other patterns besides those we observe in protons and neutrons. Most of these patterns of motion, known as mesons and baryons, are unstable, but dozens survive long enough to be studied experimentally and weighed. Not on a bathroom scale, of course: This “weighing” involves monitoring the mass and motion of the stuff the mesons and baryons decay into, and then using formulas from the theory of relativity to add it up.

In the parallel world of ideas, we also have a precise mathematical theory of how quarks and gluons interact with one another, called quantum chromodynamics or QCD, that has passed many observational tests. It is challenging to solve the equations of QCD, but clever people, with the help of supercomputers, are getting good at it. They can identify the sustained patterns of motion, including the ones we call protons and neutrons, and they have calculated how much energy-and, thus, according to m=E/c², how much mass-each one contains. Theory and observations agree beautifully, inspiring faith in our understanding.

If you’ve been distressed about your weight, maybe you’ll find comfort in knowing that it reflects your pent-up energy. Or maybe not. Sadly, since the quarks and gluons inside protons and neutrons can’t be coaxed to slow down, their energy can’t be starved or exercised away. There’s no subatomic recipe here for weight loss.

The only practical way to shed your excess weight remains what it has always been: Your output of protons and neutrons must exceed your input. Dieting, obviously, decreases the input. And exercise, by speeding burnt fuel along, raises the output. Good luck!




推荐阅读

【诺奖得主Wilczek科普专栏】填满“空”间的粒子>>

【诺奖得主Wilczek科普专栏】时间的一道皱纹>>

【诺奖得主Wilczek科普专栏】宇宙弹球的启示>>

【诺奖得主Wilczek科普专栏】延迟宇宙热寂>>

【诺奖得主Wilczek科普专栏】韦伯望远镜摄影图赏>>

【诺奖得主Wilczek科普专栏】可能性和真理>>

【诺奖得主Wilczek科普专栏】空穴如何“来风”?>>

【诺奖得主Wilczek科普专栏】量子奇普>>

【诺奖得主Wilczek科普专栏】纠错之错>>

【诺奖得主Wilczek科普专栏】欧几里德的几何时空>>

编辑:黄琦

蔻享学术 平台


蔻享学术平台,国内领先的一站式科学资源共享平台,依托国内外一流科研院所、高等院校和企业的科研力量,聚焦前沿科学,以优化科研创新环境、传播和服务科学、促进学科交叉融合为宗旨,打造优质学术资源的共享数据平台。

识别二维码,

下载 蔻享APP  查看最新资源数据。 


点击阅读原文,查看更多!

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存