查看原文
其他

用Python提取pdf文件中的表格数据

爬虫俱乐部 Stata and Python数据分析 2022-03-15

本文作者:杨慧琳

本文编辑:周聪聪

技术总编:张学人

有问题,不要怕!访问 

http://www.wuhanstring.com/uploads/5_aboutus/爬虫俱乐部-用户问题登记表.docx(复制到浏览器中)下载爬虫俱乐部用户问题登记表并按要求填写后发送至邮箱statatraining@163.com,我们会及时为您解答哟~

爬虫俱乐部的github主站正式上线了!我们的网站地址是:https://stata-club.github.io,粉丝们可以通过该网站访问过去的推文哟~

爬虫俱乐部隆重推出数据定制及处理业务,您有任何网页数据获取及处理方面的难题,请发邮件至我们邮箱statatraining@163.com,届时会有俱乐部高级会员为您排忧解难

在实际研究中,我们经常需要获取大量数据,而这些数据很大一部分以pdf表格的形式呈现,如公司年报、发行上市公告等。面对如此多的数据表格,采用手工复制黏贴的方式显然并不可取。那么如何才能高效提取出pdf文件中的表格数据呢?

Python提供了许多可用于pdf表格识别的库,如camelot、tabula、pdfplumber等。综合来看,pdfplumber库的性能较佳,能提取出完整、且相对规范的表格。因此,本推文也主要介绍pdfplumber库在pdf表格提取中的作用。

作为一个强大的pdf文件解析工具,pdfplumber库可迅速将pdf文档转换为易于处理的txt文档,并输出pdf文档的字符、页面、页码等信息,还可进行页面可视化操作。使用pdfplumber库前需先安装,即在cmd命令行中输入:

pip install pdfplumber

pdfplumber库提供了两种pdf表格提取函数,分别为.extract_tables( )及.extract_table( ),两种函数提取结果存在差异。为进行演示,我们网站上下载了一份短期融资券主体信用评级报告,为pdf格式。任意选取某一表格,其界面如下:

接下来,我们简要分析两种提取模式下的结果差异。

(1).extract_tables( )

可输出页面中所有表格,并返回一个嵌套列表,其结构层次为table→row→cell。此时,页面上的整个表格被放入一个大列表中,原表格中的各行组成该大列表中的各个子列表。若需输出单个外层列表元素,得到的便是由原表格同一行元素构成的列表。例如,我们执行如下程序:

import pdfplumberwith pdfplumber.open(r'F:\python\财务报表\主体评级报告.pdf') as pdf: page = pdf.pages[45] #设置操作页面 for row in page.extract_tables() : print(row) print(row[0]) #打印外层列表第一个元素

输出结果:

(2).extract_table( )

返回多个独立列表,其结构层次为row→cell。若页面中存在多个行数相同的表格,则默认输出顶部表格;否则,仅输出行数最多的一个表格。此时,表格的每一行都作为一个单独的列表,列表中每个元素即为原表格的各个单元格内容。若需输出某个元素,得到的便是具体的数值或字符串。如下:

with pdfplumber.open(r'F:\python\财务报表\主体评级报告.pdf') as pdf: page = pdf.pages[45] for row in page.extract_table() : print(row)        print(row[0])     #打印每个列表对应的第一个元素

输出结果:


在此基础上,我们详细介绍如何从pdf文件中提取表格数据。其中一种思路便是将提取出的列表视为一个字符串,结合Python的正则表达式re模块进行字符串处理后,将其保存为以标准英文逗号分隔、可被Excel识别的csv格式文件,即进行如下操作:

import pdfplumberimport re#提取出单个表格数据with pdfplumber.open(r'F:\python\财务报表\主体评级报告.pdf') as pdf: page = pdf.pages[45] table = [] for line in page.extract_table() : table.append(line)t0 = re.sub('年 份','年份',str(table))t1 = re.sub('\], \[','\n',t0) #进行分行t2 = re.sub('\'\, \'',' ',t1) #将各个元素用空格分隔开t3 =re.sub('\[\[|\]\]|\,|\'|\-','',t2) #删除特殊符号等f = open(r'F:\python\财务报表\主体评级报告.csv','w') f.write(re.sub(' ',',',t3)) #单元格元素用逗号分隔,便于分列读入Excelf.close()

输出结果:

爬虫俱乐部是您身边的科研助手,能够为您在数据处理、实证研究中提供帮助。承蒙近四万粉丝的支持与厚爱,我们在腾讯课堂推出了网络视频课程,专注于数据整理、网络爬虫、循环命令编制和结果输出…李老师及团队精彩地讲解,深入浅出,注重案例与实战,让您更加快速高效地掌握Stata技巧及数据处理的精髓,而且可以无限次重复观看,在原有课程基础上已上传了全新的内容!百分百好评,简单易学,一个月让您从入门到精通。绝对物超所值!观看学习网址:

https://ke.qq.com/course/286526?tuin=1b60b462

敬请关注!

尽管能获得完整的表格数据,但这种方法相对不易理解,且在处理结构不规则的表格时容易出错。由于通过pdfplumber库提取出的表格数据为整齐的列表结构,且含有数字、字符串等数据类型。因此,我们可调用pandas库下的DataFrame( )函数,将列表转换为可直接输出至Excel的DataFrame数据结构。DataFrame的基本构造函数如下:

DataFrame([data,index, columns])

三个参数data、index和columns分别代表创建对象、行索引和列索引。DataFrame类型可由二维ndarray对象、列表、字典、元组等创建。本推文中的data即指整个pdf表格,提取程序如下:

import pdfplumberimport pandas as pdwith pdfplumber.open(r'F:\python\财务报表\主体评级报告.pdf') as pdf: page = pdf.pages[45] for table in page.extract_tables():         tb = pd.DataFrame(table[1:],columns=table[0],index=None) #以第一行为列变量tb.to_excel(r'F:\python\财务报表\主体评级报告.xlsx',index=False) #不显示索引

其中,table[1:]表示选定整个表格进行DataFrame对象创建,columns=table[0]表示将表格第一行元素作为列变量名,且不创建行索引。输出Excel表格如下:

通过以上简单程序,我们便提取出了完整的pdf表格。但需注意的是,面对不规则的表格数据提取,创建DataFrame对象的方法依然可能出错,在实际操作中还需进行核对。


对爬虫俱乐部的推文累计打赏超过1000元我们即可给您开具发票,发票类别为“咨询费”。用心做事,只为做您更贴心的小爬虫!

往期推文推荐

关于我们

微信公众号“爬虫俱乐部”分享实用的stata命令,欢迎转载、打赏。爬虫俱乐部是由李春涛教授领导下的研究生及本科生组成的大数据分析和数据挖掘团队。

此外,欢迎大家踊跃投稿,介绍一些关于stata的数据处理和分析技巧。

投稿邮箱:statatraining@163.com

投稿要求:
1)必须原创,禁止抄袭;
2)必须准确,详细,有例子,有截图;
注意事项:
1)所有投稿都会经过本公众号运营团队成员的审核,审核通过才可录用,一经录用,会在该推文里为作者署名,并有赏金分成。
2)邮件请注明投稿,邮件名称为“投稿+推文名称”。
3)应广大读者要求,现开通有偿问答服务,如果大家遇到关于stata分析数据的问题,可以在公众号中提出,只需支付少量赏金,我们会在后期的推文里给予解答。

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存