责编 | 迦溆 哺乳动物早期胚胎发育经历了细胞命运的多次转变,表观遗传信息在维持细胞命运和控制基因表达中发挥重要作用,解析表观遗传修饰在早期胚胎发育过程中的重塑与调控机制,对促进再生医学以及生殖医学的发展有重要意义。 近日,同济大学高绍荣教授团队在Protein & Cell杂志发表特邀综述“Insights into epigenetic patterns in mammalian early embryos”,详细总结了近年来利用微量组学的方法对哺乳动物早期胚胎发育过程中表观遗传重塑机制研究的最新进展,比较了这些重编程事件在小鼠和人类之间的异同,并探讨了表观修饰如何调控体细胞核移植过程中细胞命运的转变。 受精作用被认为是自然界最伟大的奇迹之一,起始于高度特化的配子-精子与卵母细胞的结合,在这个过程中,细胞的表观修饰经历了大规模的重编程以获得全能性,表观修饰重编程的不完全是胚胎发育异常的重要原因。受到细胞量的限制,该领域的研究一直进展比较缓慢,近年来,得益于微量组学技术的发展,包括高绍荣课题组在内的多个研究团队(哈佛大学张毅教授团队、清华大学颉伟教授团队、北京大学汤富酬教授团队以及中科院基因组所刘江研究员团队等)对哺乳动物早期胚胎发育过程中全基因组水平的表观修饰变化进行了系统地分析,全面探讨了包括DNA甲基化、组蛋白修饰、染色质可及性以及染色质三维结构等表观修饰对细胞命运转变的调控机制。这些研究为进一步研究早期胚胎发育的表观遗传调控机制提供了很好的基础。
DNA甲基化
小鼠受精后发生大规模的不对称的DNA去甲基化 在第一次卵裂发生前,除了印记控制区域(imprinting control regions, ICRs)和部分逆转座子(retrotransposons)之外,母源和父源基因组会经历广泛的主动和被动的DNA去甲基化【1-5】。父源基因组的DNA去甲基化发生得更剧烈更主动【6-8】。相比之下,母源基因组对这种初始的DNA去甲基化更具抵抗力,其在卵裂过程中更倾向于被动去甲基化,从而在早期胚胎中产生了表观遗传修饰的不对称性【9-11】。 DNA甲基化的异常重编程可能导致发育缺陷和胚胎阻滞。体细胞核移植(SCNT)胚胎中异常高的DNA甲基化水平就是导致其发育率远低于正常受精胚胎的表观遗传障碍之一【12-15】。通过比较克隆胚胎与正常受精胚胎的DNA甲基化组,我们课题组发现克隆胚胎中存在着再甲基化区域(re-methylated DMRs , rDMRs),并且富含了与全能性和发育相关的基因【16】,表明配子或供体细胞的DNA甲基化水平的记忆和重塑对子代早期胚胎发育有重要作用。人与小鼠的植入前胚胎的DNA甲基化重编程模式大体相似,但细节不同 人类胚胎中最初的快速DNA去甲基化发生在受精卵到2细胞阶段,并保持稳定直至桑椹胚期,随后是从桑椹胚到囊胚阶段的第二次DNA去甲基化【17】。人胚胎整体的DNA甲基化模式呈现出广泛的大幅去甲基化和有针对性的密集从头甲基化(主要发生在8细胞阶段)之间的动态平衡。与小鼠相似的是,人类父源基因组经历的去甲基化的速度要比母源基因组更快【18-21】。值得注意的是,与常用的哺乳动物模型相比,人类胚胎的遗传背景更为复杂,这可能会影响分析结果的准确性。
1. Guo, F., Li, L., Li, J., Wu, X., Hu, B., Zhu, P., Wen, L., and Tang, F. (2017). Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res 27, 967-988.2. Messerschmidt, D.M., Knowles, B.B., and Solter, D. (2014). DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 28, 812-828.3. SanMiguel, J.M., and Bartolomei, M.S. (2018). DNA methylation dynamics of genomic imprinting in mouse development. Biol Reprod 99, 252-262.4. Shen, L., Inoue, A., He, J., Liu, Y., Lu, F., and Zhang, Y. (2014). Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes. Cell Stem Cell 15, 459-471.5. Smith, Z.D., Chan, M.M., Mikkelsen, T.S., Gu, H., Gnirke, A., Regev, A., and Meissner, A. (2012). A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339-344.6. Inoue, A., and Zhang, Y. (2014). Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes. Nat Struct Mol Biol 21, 609-616.7. Loppin, B., Bonnefoy, E., Anselme, C., Laurencon, A., Karr, T.L., and Couble, P. (2005). The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437, 1386-1390.8. Skene, P.J., and Henikoff, S. (2013). Histone variants in pluripotency and disease. Development 140, 2513-2524.9. Guo, F., Li, L., Li, J., Wu, X., Hu, B., Zhu, P., Wen, L., and Tang, F. (2017). Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res 27, 967-988.10. Stewart, K.R., Veselovska, L., and Kelsey, G. (2016). Establishment and functions of DNA methylation in the germline. Epigenomics 8, 1399-1413.11. Xu, Q., and Xie, W. (2018). Epigenome in Early Mammalian Development: Inheritance, Reprogramming and Establishment. Trends Cell Biol 28, 237-253.12. Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., Wolf, E., and Reik, W. (2001). Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci U S A 98, 13734-13738.13. Peat, J.R., and Reik, W. (2012). Incomplete methylation reprogramming in SCNT embryos. Nat Genet 44, 965-966.14. Teperek, M., and Miyamoto, K. (2013). Nuclear reprogramming of sperm and somatic nuclei in eggs and oocytes. Reprod Med Biol 12, 133-149.15. Yang, X., Smith, S.L., Tian, X.C., Lewin, H.A., Renard, J.P., and Wakayama, T. (2007). Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet 39, 295-302.16. Gao, R., Wang, C., Gao, Y., Xiu, W., Chen, J., Kou, X., Zhao, Y., Liao, Y., Bai, D., Qiao, Z., et al. (2018b). Inhibition of Aberrant DNA Re-methylation Improves Post-implantation Development of Somatic Cell Nuclear Transfer Embryos. Cell Stem Cell 23, 426-435 e425.17. Guo, H., Zhu, P., Yan, L., Li, R., Hu, B., Lian, Y., Yan, J., Ren, X., Lin, S., Li, J., et al. (2014b). The DNA methylation landscape of human early embryos. Nature 511, 606-610.18. Fulka, H., Mrazek, M., Tepla, O., and Fulka, J., Jr. (2004). DNA methylation pattern in human zygotes and developing embryos. Reproduction 128, 703-708.19. Okae, H., Chiba, H., Hiura, H., Hamada, H., Sato, A., Utsunomiya, T., Kikuchi, H., Yoshida, H., Tanaka, A., Suyama, M., et al. (2014a). Genome-wide analysis of DNA methylation dynamics during early human development. PLoS Genet 10, e1004868.20. Smith, Z.D., Chan, M.M., Humm, K.C., Karnik, R., Mekhoubad, S., Regev, A., Eggan, K., and Meissner, A. (2014). DNA methylation dynamics of the human preimplantation embryo. Nature 511, 611-615.21. Zhu, P., Guo, H., Ren, Y., Hou, Y., Dong, J., Li, R., Lian, Y., Fan, X., Hu, B., Gao, Y., et al. (2018). Single-cell DNA methylome sequencing of human preimplantation embryos. Nat Genet 50, 12-19.22. Dahl, J.A., Jung, I., Aanes, H., Greggains, G.D., Manaf, A., Lerdrup, M., Li, G., Kuan, S., Li, B., Lee, A.Y., et al. (2016). Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 537, 548-552.23. Liu, X., Wang, C., Liu, W., Li, J., Li, C., Kou, X., Chen, J., Zhao, Y., Gao, H., Wang, H., et al. (2016b). Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537, 558-562.24. Zhang, B., Zheng, H., Huang, B., Li, W., Xiang, Y., Peng, X., Ming, J., Wu, X., Zhang, Y., Xu, Q., et al. (2016). Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537, 553-557.25. Xia, W., Xu, J., Yu, G., Yao, G., Xu, K., Ma, X., Zhang, N., Liu, B., Li, T., Lin, Z., et al. (2019). Resetting histone modifications during human parental-to-zygotic transition. Science 365, 353-360.26. Inoue, A., Jiang, L., Lu, F., Suzuki, T., and Zhang, Y. (2017a). Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547, 419-424.27. Santos, F., Peters, A.H., Otte, A.P., Reik, W., and Dean, W. (2005). Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 280, 225-236.28. Zheng, H., Huang, B., Zhang, B., Xiang, Y., Du, Z., Xu, Q., Li, Y., Wang, Q., Ma, J., Peng, X., et al. (2016). Resetting Epigenetic Memory by Reprogramming of Histone Modifications in Mammals. Mol Cell 63, 1066-1079.29. Xia, W., Xu, J., Yu, G., Yao, G., Xu, K., Ma, X., Zhang, N., Liu, B., Li, T., Lin, Z., et al. (2019). Resetting histone modifications during human parental-to-zygotic transition. Science 365, 353-360.30. Saha, B., Home, P., Ray, S., Larson, M., Paul, A., Rajendran, G., Behr, B., and Paul, S. (2013). EED and KDM6B Coordinate the First Mammalian Cell Lineage Commitment To Ensure Embryo Implantation. Mol Cell Biol 33, 2691-2705.31. Xiang, Y., Zhang, Y., Xu, Q., Zhou, C., Liu, B., Du, Z., Zhang, K., Zhang, B., Wang, X., Gayen, S., et al. (2020). Epigenomic analysis of gastrulation identifies a unique chromatin state for primed pluripotency. Nat Genet 52, 95-105.32. Wang, C., Liu, X., Gao, Y., Yang, L., Li, C., Liu, W., Chen, C., Kou, X., Zhao, Y., Chen, J., et al. (2018a). Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nat Cell Biol 20, 620-631.33. Matoba, S., Liu, Y., Lu, F., Iwabuchi, K.A., Shen, L., Inoue, A., and Zhang, Y. (2014). Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 159, 884-895.34. Schultz, R.M. (2002). The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update 8, 323-331.35. Liu, W., Liu, X., Wang, C., Gao, Y., Gao, R., Kou, X., Zhao, Y., Li, J., Wu, Y., Xiu, W., et al. (2016a). Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing. Cell Discov 2, 16010.36. Kigami, D., Minami, N., Takayama, H., and Imai, H. (2003). MuERV-L is one of the earliest transcribed genes in mouse one-cell embryos. Biol Reprod 68, 651-654.37. Macfarlan, T.S., Gifford, W.D., Driscoll, S., Lettieri, K., Rowe, H.M., Bonanomi, D., Firth, A., Singer, O., Trono, D., and Pfaff, S.L. (2012). Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57-63.38. Svoboda, P., Stein, P., Anger, M., Bernstein, E., Hannon, G.J., and Schultz, R.M. (2004). RNAi and expression of retrotransposons MuERV-L and IAP in preimplantation mouse embryos. Dev Biol 269, 276-285.39. Wu, J., Huang, B., Chen, H., Yin, Q., Liu, Y., Xiang, Y., Zhang, B., Liu, B., Wang, Q., Xia, W., et al. (2016). The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534, 652-657.40. Fadloun, A., Le Gras, S., Jost, B., Ziegler-Birling, C., Takahashi, H., Gorab, E., Carninci, P., and Torres-Padilla, M.E. (2013). Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA. Nat Struct Mol Biol 20, 332-338.41. Bourque, G. (2009). Transposable elements in gene regulation and in the evolution of vertebrate genomes. Curr Opin Genet Dev 19, 607-612.42. Wu, Y., Liu, W., Chen, J., Liu, S., Wang, M., Yang, L., Chen, C., Qi, M., Xu, Y., Qiao, Z., et al. (2019). Nuclear Exosome Targeting Complex Core Factor Zcchc8 Regulates the Degradation of LINE1 RNA in Early Embryos and Embryonic Stem Cells. Cell Rep 29, 2461-2472 e2466.43. Tsompana, M., and Buck, M.J. (2014). Chromatin accessibility: a window into the genome. Epigenetics Chromatin 7, 33.44. Shen, Y., Yue, F., McCleary, D.F., Ye, Z., Edsall, L., Kuan, S., Wagner, U., Dixon, J., Lee, L., Lobanenkov, V.V., et al. (2012). A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116-120.45. Lee, M.T., Bonneau, A.R., and Giraldez, A.J. (2014). Zygotic genome activation during the maternal-to-zygotic transition. Annu Rev Cell Dev Biol 30, 581-613.46. Wu, J., Xu, J., Liu, B., Yao, G., Wang, P., Lin, Z., Huang, B., Wang, X., Li, T., Shi, S., et al. (2018). Chromatin analysis in human early development reveals epigenetic transition during ZGA. Nature 557, 256-260.47. Li, L., Guo, F., Gao, Y., Ren, Y., Yuan, P., Yan, L., Li, R., Lian, Y., Li, J., Hu, B., et al. (2018a). Single-cell multi-omics sequencing of human early embryos. Nat Cell Biol 20, 847-858.48. Du, Z., Zheng, H., Huang, B., Ma, R., Wu, J., Zhang, X., He, J., Xiang, Y., Wang, Q., Li, Y., et al. (2017). Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547, 232-235.49. Borsos, M., Perricone, S.M., Schauer, T., Pontabry, J., de Luca, K.L., de Vries, S.S., Ruiz-Morales, E.R., Torres-Padilla, M.E., and Kind, J. (2019). Genome-lamina interactions are established de novo in the early mouse embryo. Nature 569, 729-733.50. Collombet, S., Ranisavljevic, N., Nagano, T., Varnai, C., Shisode, T., Leung, W., Piolot, T., Galupa, R., Borensztein, M., Servant, N., et al. (2020). Parental-to-embryo switch of chromosome organization in early embryogenesis. Nature 580, 142-146.51. Chen, X., Ke, Y., Wu, K., Zhao, H., Sun, Y., Gao, L., Liu, Z., Zhang, J., Tao, W., Hou, Z., et al. (2019a). Key role for CTCF in establishing chromatin structure in human embryos. Nature 576, 306-310.52. Chen, M., Zhu, Q., Li, C., Kou, X., Zhao, Y., Li, Y., Xu, R., Yang, L., Yang, L., Gu, L., et al. (2020). Chromatin architecture reorganization in murine somatic cell nuclear transfer embryos. Nat Commun 11, 1813.