查看原文
其他

『珍藏版』综述| 高绍荣课题组全面总结哺乳动物植入前胚胎发育的表观遗传调控研究进展

The following article is from BioArt Author BioArt

责编 | 迦溆

哺乳动物早期胚胎发育经历了细胞命运的多次转变,表观遗传信息在维持细胞命运和控制基因表达中发挥重要作用,解析表观遗传修饰在早期胚胎发育过程中的重塑与调控机制,对促进再生医学以及生殖医学的发展有重要意义。

近日,同济大学高绍荣教授团队在Protein & Cell杂志发表特邀综述“Insights into epigenetic patterns in mammalian early embryos”,详细总结了近年来利用微量组学的方法对哺乳动物早期胚胎发育过程中表观遗传重塑机制研究的最新进展,比较了这些重编程事件在小鼠和人类之间的异同,并探讨了表观修饰如何调控体细胞核移植过程中细胞命运的转变。


受精作用被认为是自然界最伟大的奇迹之一,起始于高度特化的配子-精子与卵母细胞的结合,在这个过程中,细胞的表观修饰经历了大规模的重编程以获得全能性,表观修饰重编程的不完全是胚胎发育异常的重要原因。受到细胞量的限制,该领域的研究一直进展比较缓慢,近年来,得益于微量组学技术的发展,包括高绍荣课题组在内的多个研究团队(哈佛大学张毅教授团队、清华大学颉伟教授团队、北京大学汤富酬教授团队以及中科院基因组所刘江研究员团队等)对哺乳动物早期胚胎发育过程中全基因组水平的表观修饰变化进行了系统地分析,全面探讨了包括DNA甲基化、组蛋白修饰、染色质可及性以及染色质三维结构等表观修饰对细胞命运转变的调控机制。这些研究为进一步研究早期胚胎发育的表观遗传调控机制提供了很好的基础。


DNA甲基化



小鼠受精后发生大规模的不对称的DNA去甲基化

在第一次卵裂发生前,除了印记控制区域(imprinting control regions, ICRs)和部分逆转座子(retrotransposons)之外,母源和父源基因组会经历广泛的主动和被动的DNA去甲基化【1-5】。父源基因组的DNA去甲基化发生得更剧烈更主动【6-8】。相比之下,母源基因组对这种初始的DNA去甲基化更具抵抗力,其在卵裂过程中更倾向于被动去甲基化,从而在早期胚胎中产生了表观遗传修饰的不对称性【9-11】

DNA甲基化的异常重编程可能导致发育缺陷和胚胎阻滞。体细胞核移植(SCNT)胚胎中异常高的DNA甲基化水平就是导致其发育率远低于正常受精胚胎的表观遗传障碍之一【12-15】。通过比较克隆胚胎与正常受精胚胎的DNA甲基化组,我们课题组发现克隆胚胎中存在着再甲基化区域(re-methylated DMRs , rDMRs),并且富含了与全能性和发育相关的基因【16】,表明配子或供体细胞的DNA甲基化水平的记忆和重塑对子代早期胚胎发育有重要作用。
 
人与小鼠的植入前胚胎的DNA甲基化重编程模式大体相似,但细节不同

人类胚胎中最初的快速DNA去甲基化发生在受精卵到2细胞阶段,并保持稳定直至桑椹胚期,随后是从桑椹胚到囊胚阶段的第二次DNA去甲基化【17】。人胚胎整体的DNA甲基化模式呈现出广泛的大幅去甲基化和有针对性的密集从头甲基化(主要发生在8细胞阶段)之间的动态平衡。与小鼠相似的是,人类父源基因组经历的去甲基化的速度要比母源基因组更快【18-21】。值得注意的是,与常用的哺乳动物模型相比,人类胚胎的遗传背景更为复杂,这可能会影响分析结果的准确性。
 

组蛋白修饰



H3K4me3

2016年,通过利用低起始量的ChIP-seq技术,我们课题组以及颉伟、任兵三个团队同时发表论文,首次描绘出了小鼠胚胎在ZGA阶段和第一次细胞命运决定时的多种组蛋白修饰在全基因组的分布情况【22-24】(见图1)受精后,父源基因组中的H3K4me3(活跃启动子的标记)被迅速去除,但在主要ZGA(major ZGA)阶段被重新建立。相比之下,母源基因组的H3K4me3呈现非经典的形式(noncanonical H3K4me3, ncH3K4me3)【22】【24】。过表达Kdm5b会导致成熟卵母细胞的转录组重新激活,表明ncH3K4me3可能与卵母细胞中全基因组的沉默状态有关【24】,但是在人的GV期和MI期卵母细胞中并不存在大量的ncH3K4me3,表明人类卵母细胞的基因组沉默机制与小鼠中受ncH3K4me3调控的机制是不同的【25】。有趣的是,H3K4me3峰的宽度在小鼠着床前胚胎发育过程中是高度动态变化的,并且与基因表达水平呈正相关【23】


图1 小鼠早期胚胎发育组蛋白修饰和染色质可及性的表观基因组重编程。
 
H3K27me3

在小鼠早期胚胎发育期间,父源和母源等位基因的启动子区域中的H3K27me3早在PN5时期的受精卵中就经历了广泛的去除,随后在从桑椹胚到囊胚阶段出现修饰的动态变化【23】【26-28】(见图1)。在人类植入前胚胎发育过程中,H3K27me3的重编程与小鼠不同。ZGA(8细胞期)阶段的人类胚胎几乎观察不到H3K27me3的信号,表明在两个亲本基因组上H3K27me3整体的擦除【29】(见图2),这可能与人类早期胚胎中缺失PRC2有关【30】

图2 人类植入前胚胎发育过程中动态组蛋白修饰和染色质可及性。
 
二价修饰(Bivalent)

小鼠植入前胚胎中的两种修饰共存的基因数量要比胚胎干细胞(embryonic stem cells, ESCs)中少很多 【23】。在胚胎发育过程中,二价修饰直到谱系分化开始时的囊胚阶段才开始建立。有趣的是,在胚胎第6.5天(Embryonic day 6.5, E6.5)的外胚层(epiblast),在发育相关基因的启动子区域发现了较强的二价修饰,即“超级二价(Super bivalent)”,并表现出独特的染色质高级结构【31】
 
H3K9me3

在小鼠早期胚胎发育过程中,H3K9me3被发现主要富集在LTR区域。我们最近的研究表明,小鼠胚胎中,H3K9me3会在DNA甲基化去除之后富集到LTR区域上,起到抑制LTR表达的作用【32】。异常的H3K9me3重编程被认为会直接导致ZGA的失败【33】【34】。我们在克隆胚胎中过表达Kdm4b(H3K9去甲基化酶)能够挽救受H3K9me3影响表达的ZGA相关基因的转录,并显著提高克隆胚胎的发育率【35】。另外我们还发现,供体细胞中的H3K9me3还会阻碍克隆胚胎发育过程中拓扑相关结构域(topologically associated domains, TADs)的去除,说明H3K9me3是细胞命运转变的重要障碍。


转座子



胚胎发育早期会有大量转座子元件被激活,例如,MERVL在类2细胞(2-cell like)的ESCs和分裂期的胚胎中表达,可以驱动很多ZGA特异和全能性特异的转录本的表达【36-39】。长分散元件(long interspersed element, LINE1)在小鼠植入前胚胎发育过程中高表达【40】,受精之后便开始活跃转录并在2细胞阶段达到最高值,其在基因调控网络中起着至关重要的作用【41】。我们最近的研究发现小鼠卵母细胞和早期胚胎中ZCCHC8的缺失会导致持续丰富的LINE1 RNA以及较高的染色质可及性【42】
 

染色质可及性



胚胎发育过程中,染色质可及性也经历了剧烈的重编程。与受精后父母源基因组中DNA甲基化和组蛋白修饰的不对称重编程方式不同的是,除了少数等位基因特异性开放染色质和转录的情况外,父母源染色质可及性似乎更加同步【39】【43】值得注意的是,开放染色质存在于2细胞阶段活跃转录基因的启动子和转录末端位点附近,这与其他小鼠组织和细胞类型中顺式调控序列的模式不同【44】。在人类胚胎发育过程中,在ZGA发生之前的2细胞阶段就能观察到广泛分布的染色质可及区域【45】【46】,人早期胚胎最显著的染色体重塑发生在4细胞和8细胞阶段之间(见图1)
 
3D染色质

小鼠MII卵母细胞由于其有丝分裂性质而缺乏TAD和区室结构,但是存在由H3K27me3标记的多梳相关域(PAD)【47】。相比之下,精子既存在TAD,又存在A/B区室【48】。受精后,父母源的染色质高级结构在合子和ZGA阶段均不明显,但在空间上彼此分离并显示出明显的区室化。这种等位的分离和区室化会一直保持到8细胞阶段,并与H3K27me3的富集相吻合【48-50】。与小鼠精子不同的是,人类精子缺乏TAD和CTCF的表达【51】(见图3)。在人类胚胎发生过程中,TAD和A/B区室也是逐渐建立的。


图3 小鼠和人类配子和植入前胚胎中的高级染色质组织。

近日,我们课题组在克隆早期胚胎发育过程中均观察到异常的TAD和A/B区室结构【52】。Kdm4b的过表达部分改善了染色质的3D结构异常,表明供体细胞中的H3K9me3修饰是染色质结构重编程的障碍,体现了染色质3D结构的形成和组蛋白修饰之间的相关性。
 

展望



近年来,由于微量表观基因组的研究,我们对植入前发育的表观遗传重编程机制的理解有了很大提高。然而,如何在不同的基因组位点上调节重编程仍然未知。在位点特异性的表观遗传修饰转变中,转录因子的识别发挥重要作用。进一步的机制研究需要进行多组学分析以阐明全能性获得和细胞命运决定的基本原理,这将增进我们对细胞命运转变和哺乳动物早期发育的了解。

相关阅读:
『珍藏版』综述丨伊成器、宋春啸等全面总结DNA和RNA修饰的检测方法和研究困境

原文链接:
https://link.springer.com/content/pdf/10.1007/s13238-020-00757-z.pdf


参考文献



1. Guo, F., Li, L., Li, J., Wu, X., Hu, B., Zhu, P., Wen, L., and Tang, F. (2017). Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res 27, 967-988.
2. Messerschmidt, D.M., Knowles, B.B., and Solter, D. (2014). DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 28, 812-828.
3. SanMiguel, J.M., and Bartolomei, M.S. (2018). DNA methylation dynamics of genomic imprinting in mouse development. Biol Reprod 99, 252-262.
4. Shen, L., Inoue, A., He, J., Liu, Y., Lu, F., and Zhang, Y. (2014). Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes. Cell Stem Cell 15, 459-471.
5. Smith, Z.D., Chan, M.M., Mikkelsen, T.S., Gu, H., Gnirke, A., Regev, A., and Meissner, A. (2012). A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339-344.
6. Inoue, A., and Zhang, Y. (2014). Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes. Nat Struct Mol Biol 21, 609-616.
7. Loppin, B., Bonnefoy, E., Anselme, C., Laurencon, A., Karr, T.L., and Couble, P. (2005). The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437, 1386-1390.
8. Skene, P.J., and Henikoff, S. (2013). Histone variants in pluripotency and disease. Development 140, 2513-2524.
9. Guo, F., Li, L., Li, J., Wu, X., Hu, B., Zhu, P., Wen, L., and Tang, F. (2017). Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res 27, 967-988.
10. Stewart, K.R., Veselovska, L., and Kelsey, G. (2016). Establishment and functions of DNA methylation in the germline. Epigenomics 8, 1399-1413.
11. Xu, Q., and Xie, W. (2018). Epigenome in Early Mammalian Development: Inheritance, Reprogramming and Establishment. Trends Cell Biol 28, 237-253.
12. Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., Wolf, E., and Reik, W. (2001). Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci U S A 98, 13734-13738.
13. Peat, J.R., and Reik, W. (2012). Incomplete methylation reprogramming in SCNT embryos. Nat Genet 44, 965-966.
14. Teperek, M., and Miyamoto, K. (2013). Nuclear reprogramming of sperm and somatic nuclei in eggs and oocytes. Reprod Med Biol 12, 133-149.
15. Yang, X., Smith, S.L., Tian, X.C., Lewin, H.A., Renard, J.P., and Wakayama, T. (2007). Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet 39, 295-302.
16. Gao, R., Wang, C., Gao, Y., Xiu, W., Chen, J., Kou, X., Zhao, Y., Liao, Y., Bai, D., Qiao, Z., et al. (2018b). Inhibition of Aberrant DNA Re-methylation Improves Post-implantation Development of Somatic Cell Nuclear Transfer Embryos. Cell Stem Cell 23, 426-435 e425.
17. Guo, H., Zhu, P., Yan, L., Li, R., Hu, B., Lian, Y., Yan, J., Ren, X., Lin, S., Li, J., et al. (2014b). The DNA methylation landscape of human early embryos. Nature 511, 606-610.
18. Fulka, H., Mrazek, M., Tepla, O., and Fulka, J., Jr. (2004). DNA methylation pattern in human zygotes and developing embryos. Reproduction 128, 703-708.
19. Okae, H., Chiba, H., Hiura, H., Hamada, H., Sato, A., Utsunomiya, T., Kikuchi, H., Yoshida, H., Tanaka, A., Suyama, M., et al. (2014a). Genome-wide analysis of DNA methylation dynamics during early human development. PLoS Genet 10, e1004868.
20. Smith, Z.D., Chan, M.M., Humm, K.C., Karnik, R., Mekhoubad, S., Regev, A., Eggan, K., and Meissner, A. (2014). DNA methylation dynamics of the human preimplantation embryo. Nature 511, 611-615.
21. Zhu, P., Guo, H., Ren, Y., Hou, Y., Dong, J., Li, R., Lian, Y., Fan, X., Hu, B., Gao, Y., et al. (2018). Single-cell DNA methylome sequencing of human preimplantation embryos. Nat Genet 50, 12-19.
22. Dahl, J.A., Jung, I., Aanes, H., Greggains, G.D., Manaf, A., Lerdrup, M., Li, G., Kuan, S., Li, B., Lee, A.Y., et al. (2016). Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 537, 548-552.
23. Liu, X., Wang, C., Liu, W., Li, J., Li, C., Kou, X., Chen, J., Zhao, Y., Gao, H., Wang, H., et al. (2016b). Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537, 558-562.
24. Zhang, B., Zheng, H., Huang, B., Li, W., Xiang, Y., Peng, X., Ming, J., Wu, X., Zhang, Y., Xu, Q., et al. (2016). Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537, 553-557.
25. Xia, W., Xu, J., Yu, G., Yao, G., Xu, K., Ma, X., Zhang, N., Liu, B., Li, T., Lin, Z., et al. (2019). Resetting histone modifications during human parental-to-zygotic transition. Science 365, 353-360.
26. Inoue, A., Jiang, L., Lu, F., Suzuki, T., and Zhang, Y. (2017a). Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547, 419-424.
27. Santos, F., Peters, A.H., Otte, A.P., Reik, W., and Dean, W. (2005). Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 280, 225-236.
28. Zheng, H., Huang, B., Zhang, B., Xiang, Y., Du, Z., Xu, Q., Li, Y., Wang, Q., Ma, J., Peng, X., et al. (2016). Resetting Epigenetic Memory by Reprogramming of Histone Modifications in Mammals. Mol Cell 63, 1066-1079.
29. Xia, W., Xu, J., Yu, G., Yao, G., Xu, K., Ma, X., Zhang, N., Liu, B., Li, T., Lin, Z., et al. (2019). Resetting histone modifications during human parental-to-zygotic transition. Science 365, 353-360.
30. Saha, B., Home, P., Ray, S., Larson, M., Paul, A., Rajendran, G., Behr, B., and Paul, S. (2013). EED and KDM6B Coordinate the First Mammalian Cell Lineage Commitment To Ensure Embryo Implantation. Mol Cell Biol 33, 2691-2705.
31. Xiang, Y., Zhang, Y., Xu, Q., Zhou, C., Liu, B., Du, Z., Zhang, K., Zhang, B., Wang, X., Gayen, S., et al. (2020). Epigenomic analysis of gastrulation identifies a unique chromatin state for primed pluripotency. Nat Genet 52, 95-105.
32. Wang, C., Liu, X., Gao, Y., Yang, L., Li, C., Liu, W., Chen, C., Kou, X., Zhao, Y., Chen, J., et al. (2018a). Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nat Cell Biol 20, 620-631.
33. Matoba, S., Liu, Y., Lu, F., Iwabuchi, K.A., Shen, L., Inoue, A., and Zhang, Y. (2014). Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 159, 884-895.
34. Schultz, R.M. (2002). The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update 8, 323-331.
35. Liu, W., Liu, X., Wang, C., Gao, Y., Gao, R., Kou, X., Zhao, Y., Li, J., Wu, Y., Xiu, W., et al. (2016a). Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing. Cell Discov 2, 16010.
36. Kigami, D., Minami, N., Takayama, H., and Imai, H. (2003). MuERV-L is one of the earliest transcribed genes in mouse one-cell embryos. Biol Reprod 68, 651-654.
37. Macfarlan, T.S., Gifford, W.D., Driscoll, S., Lettieri, K., Rowe, H.M., Bonanomi, D., Firth, A., Singer, O., Trono, D., and Pfaff, S.L. (2012). Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57-63.
38. Svoboda, P., Stein, P., Anger, M., Bernstein, E., Hannon, G.J., and Schultz, R.M. (2004). RNAi and expression of retrotransposons MuERV-L and IAP in preimplantation mouse embryos. Dev Biol 269, 276-285.
39. Wu, J., Huang, B., Chen, H., Yin, Q., Liu, Y., Xiang, Y., Zhang, B., Liu, B., Wang, Q., Xia, W., et al. (2016). The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534, 652-657.
40. Fadloun, A., Le Gras, S., Jost, B., Ziegler-Birling, C., Takahashi, H., Gorab, E., Carninci, P., and Torres-Padilla, M.E. (2013). Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA. Nat Struct Mol Biol 20, 332-338.
41. Bourque, G. (2009). Transposable elements in gene regulation and in the evolution of vertebrate genomes. Curr Opin Genet Dev 19, 607-612.
42. Wu, Y., Liu, W., Chen, J., Liu, S., Wang, M., Yang, L., Chen, C., Qi, M., Xu, Y., Qiao, Z., et al. (2019). Nuclear Exosome Targeting Complex Core Factor Zcchc8 Regulates the Degradation of LINE1 RNA in Early Embryos and Embryonic Stem Cells. Cell Rep 29, 2461-2472 e2466.
43. Tsompana, M., and Buck, M.J. (2014). Chromatin accessibility: a window into the genome. Epigenetics Chromatin 7, 33.
44. Shen, Y., Yue, F., McCleary, D.F., Ye, Z., Edsall, L., Kuan, S., Wagner, U., Dixon, J., Lee, L., Lobanenkov, V.V., et al. (2012). A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116-120.
45. Lee, M.T., Bonneau, A.R., and Giraldez, A.J. (2014). Zygotic genome activation during the maternal-to-zygotic transition. Annu Rev Cell Dev Biol 30, 581-613.
46. Wu, J., Xu, J., Liu, B., Yao, G., Wang, P., Lin, Z., Huang, B., Wang, X., Li, T., Shi, S., et al. (2018). Chromatin analysis in human early development reveals epigenetic transition during ZGA. Nature 557, 256-260.
47. Li, L., Guo, F., Gao, Y., Ren, Y., Yuan, P., Yan, L., Li, R., Lian, Y., Li, J., Hu, B., et al. (2018a). Single-cell multi-omics sequencing of human early embryos. Nat Cell Biol 20, 847-858.
48. Du, Z., Zheng, H., Huang, B., Ma, R., Wu, J., Zhang, X., He, J., Xiang, Y., Wang, Q., Li, Y., et al. (2017). Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547, 232-235.
49. Borsos, M., Perricone, S.M., Schauer, T., Pontabry, J., de Luca, K.L., de Vries, S.S., Ruiz-Morales, E.R., Torres-Padilla, M.E., and Kind, J. (2019). Genome-lamina interactions are established de novo in the early mouse embryo. Nature 569, 729-733.
50. Collombet, S., Ranisavljevic, N., Nagano, T., Varnai, C., Shisode, T., Leung, W., Piolot, T., Galupa, R., Borensztein, M., Servant, N., et al. (2020). Parental-to-embryo switch of chromosome organization in early embryogenesis. Nature 580, 142-146.
51. Chen, X., Ke, Y., Wu, K., Zhao, H., Sun, Y., Gao, L., Liu, Z., Zhang, J., Tao, W., Hou, Z., et al. (2019a). Key role for CTCF in establishing chromatin structure in human embryos. Nature 576, 306-310.
52. Chen, M., Zhu, Q., Li, C., Kou, X., Zhao, Y., Li, Y., Xu, R., Yang, L., Yang, L., Gu, L., et al. (2020). Chromatin architecture reorganization in murine somatic cell nuclear transfer embryos. Nat Commun 11, 1813.

继续滑动看下一个
干就有未来
向上滑动看下一个

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存