『珍藏版』综述丨伊成器、宋春啸等全面总结DNA和RNA修饰的检测方法和研究困境
近日,北京大学的伊成器团队和牛津大学的宋春啸团队合作在Protein & Cell发表特邀综述“Mapping the epigenetic modifications of DNA and RNA”,该篇综述详细总结了目前高通量DNA/RNA修饰检测技术的方法和发现,包括应用三代测序在单碱基水平鉴定修饰位点,并讨论了该领域存在的问题和今后研究的方向。
DNA修饰在个体发育【1】、衰老【2】和癌症【3】中发挥了重要功能。这些修饰并不干扰Watson-Crick配对原则,但能影响蛋白与DNA的结合。在哺乳动物基因组中,胞嘧啶的第5位碳原子的甲基化(5-甲基胞嘧啶,5-methylcytosine或5mC)是丰度最高的DNA修饰类型,也被称为“第5种碱基”【1】。5mC由DNA甲基化酶DNMTs催化,主要富集在CpG岛。虽然5mC的分布具有组织特异性,但70-80%的CpG岛都具有5mC修饰【4】。5-羟甲基胞嘧啶(5-hydroxymethylcytosine或5hmC),也被称为第6碱基,由TET1酶氧化5mC而来。5hmC的进一步氧化产生5-甲酰基胞嘧啶(5fC)和5-羧基胞嘧啶(5caC)。
与DNA类似,RNA也具有多种修饰,并且这些修饰参与了RNA代谢的各个方面。近年来利用高通量测序鉴定DNA/RNA修饰位点的技术极大地助力了表观基因组学和表观转录组学的研究。
1. 5mC的位点鉴定
重亚硫酸氢钠测序法(Bisulfite sequencing,BS-Seq)被认为是5mC鉴定的金标准,原理是重亚硫酸盐不影响甲基化C,却能将未发生甲基化的C转变成U(尿嘧啶),后者在PCR反应中变成T,并由此将甲基化C与未甲基化C区分开;再结合高通量测序技术,即可得到单碱基分辨率的全基因组5mC修饰图谱。重亚硫酸盐转换未甲基化C的效率高达99%,使得该方法的接受度最高【5-7】。然而,重亚硫酸盐处理会导致DNA的降解【8】,限制了它在稀少珍贵样品中的应用。另外,由于占基因组95%的未甲基化C转变成了T,降低了测序片段的匹配基因组的效率,也带来了覆盖度的偏好性。最后需要指出的是,BS-Seq并不能区分5mC和5hmC。
最近,两种无重亚硫酸盐的5mC鉴定方法被开发,分别是TAPS(TET-assisted pyridine borane sequencing)【9】和EM-seq(Enzymatic Methyl-Seq,EM-Seq)【10】,都利用TET酶对5mC的特异性氧化。TAPS的假阳性率比BS-Seq更低,能对少量DNA(1ng)进行检测;且配合过氧化氢钾可区分5mC和5hmC。EM-Seq利用了TET和DNA脱氨酶APOBEC3A,比BS-seq的灵敏度更高。
2. 5hmC,5fC和5caC的位点鉴定
深入了解5hmC、5fC和5caC的功能需要精确绘制其在基因组上的分布。oxBS-seq(Oxidative bisulfite sequencing)【11】和TAB-seq(TET-assisted bisulfite sequencing)【12,13】是改良的BS-seq,用于检测5hmC。hmC-CATCH(Chemical-assistant C-to-T conversion of 5hmC sequencing)【14】和ACE-Seq(APOBEC-coupled epigenetic sequencing【15】则是不依赖重亚硫酸盐的5hmC检测方法。5fC的检测方法包括fCAB-Seq(5fC chemically assisted bisulfite sequencing)【16】,redBS-Seq(reduced BS-Seq)【17】,MAB-Seq(methylase-assisted bisulfite sequencing)【18】和fC-CET(5fC cyclization-enabled C-to-T transition)【19】,CLEVERSeq(chemical-labeling- enabled C-to-T conversion sequencing)【20】(前三种方法是BS-seq的改良版,后两种方法则不依赖重亚硫酸盐)。5caC的检测主要采用CABSeq(Chemical modification-assisted bisulfite sequencing)【21】。值得注意的是,以上列举的测序技术都是基于化学的方法,将携带修饰或未被修饰的C转换为T,从而达到区分C是否携带修饰以及在单碱基水平鉴定DNA修饰位点的目的。
3. 基于抗体的DNA甲基化检测
基于抗体的DNA修饰位点鉴定是一种传统的,被广泛应用的较为简单的方法。目前5mC、5hmC、5fC、5caC均有商业化的抗体,可用于做DNA IP(DNA immunoprecipitation, DIP)。利用5hmC-DIP可鉴定癌症患者血液中循环DNA的5hmC【22】,说明此方法灵敏度高,无须耗费大量DNA,具有临床应用的潜力。但是DIP无法提供单碱基精度的DNA修饰分布位点,检测特异性非常依赖抗体本身的性质,且具背景(抗体与DNA的非特异性结合)较高,因此在进行DIP时,需设置严格的对照,并更谨慎地对结果进行验证。
4. DNA 6mA的测序鉴定
尽管6mA在哺乳动物基因组中的含量远低于5mC,近年来它仍然得到了越来越多的关注。DNA 6mA的测序主要依赖6mA抗体识别携带该修饰的DNA片段,该方法被证明具有较高的假阳性【23】。由于6mA是细菌中丰度最高的DNA修饰类型,因此哺乳动物中6mA的鉴定极易受细菌污染影响。虽然高精度无污染的质谱鉴定提示哺乳动物基因组DNA 6mA含量非常低,但是最近一项研究显示6mA富集在线粒体中并具有重要功能【24】。(近日,BioArt总结了哺乳动物6mA的研究历程和争议,详见:学术争鸣 | 从迷雾重重到柳暗花明?全面起底DNA 6mA修饰相关研究的争议)
RNA修饰的生物发生和鉴定
1. mRNA内部最丰富的修饰:m6A
m6A是真核生物mRNA内部丰度最高的修饰,主要由METTL3,METTL14和其他蛋白(包括WTAP, VIRMA, HAKAI, Zc3h13和RBM15/15B)组成的甲基转移酶复合体催化【25-29】。另一个m6A甲基转移酶是METTL16,催化MAT2A mRNA的m6A。m6A的去除由FTO和ALKBH5介导。因此m6A是一种可逆的RNA修饰。
尽管目前已有多种m6A的高通量鉴定技术,并广泛的应用到m6A研究中,我们仍然需要对特定的检测方法保持谨慎的态度。基于m6A-seq技术可能由于m6A抗体的非特异性结合造成假阳性。最近,有研究者开发了非抗体依赖的m6A检测方法,采用特性的核酸内切酶识别携带m6A的序列【30,31】,然而由于内切酶的活性限制,该方法仅能识别一部分m6A motif。而基于化学标记的m6A鉴定方法【32,33】则极大地受化学反应效率的影响。因此,新m6A鉴定方法的开发仍有重要意义。
越来越多的证据支持m6A在生命活动中的重要性,但同时引发了许多疑问。1)FTO的底物和功能。许多研究将FTO作为m6A去甲基化酶开展功能研究,然而实际上FTO被证明有多种催化底物(包括mRNA 的m6A和m6Am,tRNA的m1A和snRNAm6Am等)(NCB | 这一次,FTO是snRNA的m6Am去甲基化酶),目前还不清楚FTO如何选择和调控不同的底物并在细胞活动中发挥功能。2)m6A在可变剪接中的功能。虽然m6A甲基化酶,去甲基化酶和阅读蛋白都能影响可变剪接【34-36】,但有研究发现在mES中m6A对RNA剪接不是必需的【37】。因此,有关m6A如何直接或间接影响剪接事件,还需进一步研究。3)m6A在抗病毒反应中的功能。目前研究发现m6A可以修饰寨卡病毒(ZIKV)、丙型肝炎病毒(HCV)、A型流感病毒(IAV)和人免疫缺陷病毒(HIV)的RNA(新冠病毒RNA也存在丰富的修饰,详见此前报道:Cell | SARS-CoV-2转录组与RNA修饰图谱)。m6A可以抑制ZIKV病毒的感染【38】,但能促进IAV病毒的表达【39】。然而目前对m6A如何调控病毒RNA命运,以及为什么对不同病毒的作用不同,还不清楚。
2. m6Am修饰
当真核生物mRNA 5‘帽子后的第一个A携带2-O-甲基化(Am)时,可以被甲基化酶PCIF进一步催化为m6Am。然而目前m6Am的测序鉴定方法都基于使用m6A抗体(m6A抗体可识别m6A和m6Am),再辅以其他分析。因此,还需开发更特异的m6Am鉴定方法。另外,m6Am的功能还有较大争议。m6Am最开始被鉴定为与RNA稳定性相关【40】,而后的研究发现m6Am仅影响一小部分的mRNA的半衰期【41】,m6Am还可以影响mRNA的翻译效率【42】。因此,关于m6Am对mRNA命运决定还需进一步研究。
3. m1A修饰
m1A是m6A的异构体,甲基被连接到N1而不是N6位。m1A富集在tRNA,rRNA和mRNA上。甲基转移酶复合体TRMT6-TRMT61A介导mRNA上的m1A,而另一个复合体TRMT61B 和TRMT10C介导线粒体mRNA上的m1A。m1A的去甲基化由ALKBH1,ALKBH3和FTO负责。
最近,多个独立课题组开发了的高通量测序方法(包括m1A-ID-Seq【43】, m1A-Seq, m1A-MAP【44】和m1A-Seq-TGIRT【45】),然而这些方法在mRNA上仅鉴定到几十个到几百个m1A位点,而质谱显示m1A/A约为0.01~0.05%,这提示mRNA上的m1A位点应有上千个,也说明现有的m1A鉴定技术的灵敏度有限。
4. m5C,hm5C和ac4C修饰
tRNA, rRNA和mRNA均有m5C修饰,其中mRNA上的m5C由NSUN催化。借鉴DNA 5mC的鉴定方法,m5C也可采用改良的重亚硫酸盐测序法进行单碱基精度的鉴定【46,47】,但同样会面临RNA降解的问题。Aza-IP和miCLIP是无需重亚硫酸盐处理的m5C鉴定方法,但需要过表达甲基化酶,这可能导致假阳性以及不能真实反映真实条件下m5C的分布。目前hm5C和ac4C的鉴定都依赖于相应的抗体,无法达到单碱基精度。因此,我们期待未来能有准确性更高的m5C,hm5C和ac4C检测方法。
5. 假尿嘧啶Ψ修饰
假尿嘧啶Ψ被认为是RNA的第5个碱基,是RNA上最丰富的修饰类型,主要集中在tRNA,rRNA,snRNA和mRNA上。假尿嘧啶的生成依赖两类假尿苷合成酶(pseudouridine synthases,PUSs):“stand-alone” PUSs不需要共因子(cofactor),而RNA依赖的PUSs需要H/ACA box snoRNA帮助识别靶RNA。由于假尿嘧啶与N-cyclohexyl-N’-β-(4-methylmorpholinium) CMC(ethylcarbodiimide)反应会生成CMC-Ψ,影响逆转录反应,研究者们根据这一特点开发了CeU-Seq【48】。目前已在mRNA上鉴定了约2000个假尿嘧啶位点,而根据质谱检测结果,mRNA上的假尿嘧啶修饰丰度应该和m6A相当【49】。
6. m7G修饰
m7G是tRNA和mRNA 5‘帽子的经典修饰,而最近的研究表明在mRNA内部也存在m7G修饰。METTL1-WDR4复合体是可将m7G加到tRNA和一部分mRNA内部。目前已有基于抗体和化学方法的m7G检测技术(m7G-MeRIP-Seq【50】和m7G miCLIPSeq【51】)。得益于这些技术,mRNA内部的m7G被认为与翻译相关。但是,考虑到m7G在tRNA上的富集,今后的研究还需更谨慎的区别m7G在不同RNA上的功能。
长读段测序在DNA/RNA修饰检测中的应用
上述提及的测序技术都被测序长度限制,而三代测序可以进行长片段的读取,并且具有直接获取DNA/RNA修饰(无需抗体或化学处理)的潜力,具有重要意义。修饰会改变核苷酸匹配的效率,SMRT测序通过检测不同荧光标记的dNTP/NTP结合目标核苷酸的时间差异来计算单核苷酸精度的修饰【52】。同时,修饰也会改变核苷酸的电信号,而Nanopore测序通过检测核苷酸通过纳米孔径的电信号来计算携带的修饰【53】。虽然这两种三代测序技术具有很好的应用前景,但目前的计算方法和技术还存在较高的假阳性,需要进一步改进和提升。
总结和展望
总的来说,DNA/RNA修饰的鉴定技术在不断更新,向我们展示了DNA/RNA修饰在生命活动中的重要功能。但未来仍需要准确度更高,更负担得起的检测方法对修饰位点进行单碱基精度的检测,以便我们解析这些修饰如何影响RNA命运并参与各种生理过程。
原文链接:https://link.springer.com/content/pdf/10.1007/s13238-020-00733-7.pdf
向上滑动查看全部参考文献
1. Greenberg MVC, Bourc’his D (2019) The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20:590–607
2. Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A (2019) The role of DNA methylation in epigenetics of aging. Pharmacol Therapeut 195:172–185
3. Koch A, Joosten SC, Feng Z, de Ruijter TC, Draht MX, Melotte V, Smits KM, Veeck J, Herman JG, Van Neste L et al (2018) Author correction: analysis of DNA methylation in cancer: location revisited. Nat Rev Clin Oncol 15:467
4. Li E, Zhang Y (2014) DNA methylation in mammals. Cold Spring Harb Perspect Biol 6:a019133
5. Adey A, Shendure J (2012) Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing. Genome Res 22:1139–1143
6. Kobayashi H, Kono T (2012) DNA methylation analysis of germ cells by using bisulfite-based sequencing methods. Methods Mol Biol (Clifton, NJ) 825:223–235
7. Yamaguchi S, Hong K, Liu R, Shen L, Inoue A, Diep D, Zhang K, Zhang Y (2012) Tet1 controls meiosis by regulating meiotic gene expression. Nature 492:443–447
8. Tanaka K, Okamoto A (2007) Degradation of DNA by bisulfite treatment. Bioorg Med Chem Lett 17:1912–1915
9. Liu J, Harada BT, He C (2019b) Regulation of gene expression by N (6)-methyladenosine in cancer. Trends Cell Biol 29(6):487–489
10. Vaisvila R, Ponnaluri VKC, Sun Z, Langhorst BW, Saleh L, Guan S, Dai N, Campbell MA, Sexton B, Marks K et al (2019) EM-seq: detection of DNA methylation at single base resolution from picograms of DNA. BioRxiv Dec 23:2019. https://doi.org/10.1101/2019.12.20.884692
11. Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, Balasubramanian S (2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science (New York, NY) 336:934–937
12. Yu M, Hon GC, Szulwach KE, Song CX, Jin P, Ren B, He C (2012a) Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat Protoc 7:2159–2170
13. Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, Li X, Dai Q, Shen Y, Park B et al (2012b) Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149:1368–1380
14. Zeng H, He B, Xia B, Bai D, Lu X, Cai J, Chen L, Zhou A, Zhu C, Meng H et al (2018) Bisulfite-free, nanoscale analysis of 5-hydroxymethylcytosine at single base resolution. J Am Chem Soc 140:13190–13194
15. Schutsky EK, DeNizio JE, Hu P, Liu MY, Nabel CS, Fabyanic EB, Hwang Y, Bushman FD, Wu H, Kohli RM (2018) Nondestructive, base-resolution sequencing of 5-hydroxymethylcytosine using a DNA deaminase. Nat Biotechnol. https://doi.org/10.1038/nbt.4204
16. Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ, Lin L, Street C, Li Y, Poidevin M, Wu H et al (2013) Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153:678–691
17. Booth MJ, Marsico G, Bachman M, Beraldi D, Balasubramanian S (2014) Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution. Nat Chem 6:435–440
18. Guo F, Li X, Liang D, Li T, Zhu P, Guo H, Wu X, Wen L, Gu TP, Hu B et al (2014) Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell 15:447–459
19. Xia B, Han D, Lu X, Sun Z, Zhou A, Yin Q, Zeng H, Liu M, Jiang X, Xie W et al (2015) Bisulfite-free, base-resolution analysis of 5-formylcytosine at the genome scale. Nat Methods 12:1047–1050
20. Zhu C, Gao Y, Guo H, Xia B, Song J, Wu X, Zeng H, Kee K, Tang F, Yi C (2017) Single-Cell 5-formylcytosine landscapes of mammalian early embryos and ESCs at single-base resolution. Cell Stem Cell 20:720–731.e725
21. Lu X, Song CX, Szulwach K, Wang Z, Weidenbacher P, Jin P, He C (2013) Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA. J Am Chem Soc 135:9315–9317
22. Song CX, Yin S, Ma L, Wheeler A, Chen Y, Zhang Y, Liu B, Xiong J, Zhang W, Hu J et al (2017) 5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages. Cell Res 27:1231–1242
23. Lentini A, Lagerwall C, Vikingsson S, Mjoseng HK, Douvlataniotis K, Vogt H, Green H, Meehan RR, Benson M, Nestor CE (2018) A reassessment of DNA-immunoprecipitation-based genomic profiling. Nat Methods 15:499–504
24. Hao Z, Wu T, Cui X, Zhu P, Tan C, Dou X, Hsu KW, Lin YT, Peng PH, Zhang LS et al (2020) N(6)-deoxyadenosine methylation in mammalian mitochondrial DNA. Mol Cell 78(3):382–395.e8
25. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X et al (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10:93–95
26. Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS et al (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24:177–189
27. Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, Cheng T, Gao M, Shu X, Ma H et al (2018) VIRMA mediates preferential m(6)A mRNA methylation in 3’UTR and near stop codon and associates with alternative polyadenylation. Cell Discov 4:10
28. Wen J, Lv R, Ma H, Shen H, He C, Wang J, Jiao F, Liu H, Yang P, Tan L et al (2018) Zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal. Mol Cell 69:1028–1038.e1026
29. Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M, Jaffrey SR (2016) m(6)A RNA methylation promotes XISTmediated transcriptional repression. Nature 537:369–373 Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP, Conrad
30. Garcia-Campos MA, Edelheit S, Toth U, Safra M, Shachar R, Viukov S, Winkler R, Nir R, Lasman L, Brandis A et al (2019) Deciphering the “m(6)A code” via antibody-independent quantitative profiling. Cell 178:731–747.e716
31. Zhang Z, Chen LQ, Zhao YL, Yang CG, Roundtree IA, Zhang Z, Ren J, Xie W, He C, Luo GZ (2019b) Single-base mapping of m(6)A by an antibody-independent method. Sci Adv 5:250 Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ,
32. Shu X, Cao J, Cheng M, Xiang S, Gao M, Li T, Ying X, Wang F, Yue Y, Lu Z et al (2020) A metabolic labeling method detects m6A transcriptome-wide at single base resolution. Nat Chem Biol.
33. Wang Y, Xiao Y, Dong S, Yu Q, Jia G (2020) Antibody-free enzymeassisted chemical approach for detection of N6-methyladenosine. Nat Chem Biol.https://doi.org/10.1038/s41589-020-0525-x
34. Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, Hershkovitz V, Peer E, Mor N, Manor YS et al (2015) Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science (New York, NY) 347:1002–1006
35. Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ, Ping XL, Chen YS, Wang WJ et al (2014) FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res 24:1403–1419
36. Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T (2015) N(6)- methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518:560–564
37. Ke S, Pandya-Jones A, Saito Y, Fak JJ, Vagbo CB, Geula S, Hanna JH, Black DL, Darnell JE Jr, Darnell RB (2017) m(6)A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev 31:990–1006
38. Gokhale NS, McIntyre AB, McFadden MJ, Roder AE, Kennedy EM, Gandara JA, Hopcraft SE, Quicke KM, Vazquez C, Willer J et al (2016) N6-methyladenosine in flaviviridae viral RNA genomes regulates infection. Cell Host Microbe 20:654–665
39. Courtney DG, Kennedy EM, Dumm RE, Bogerd HP, Tsai K, Heaton NS, Cullen BR (2017) Epitranscriptomic enhancement of influenza A virus gene expression and replication. Cell Host Microbe 22:377–386.e375
40. Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, Linder B, Pickering BF, Vasseur JJ, Chen Q et al (2017) Reversible methylation of m(6)Am in the 5′ cap controls mRNA stability. Nature 541:371–375
41. Boulias K, Toczydlowska-Socha D, Hawley BR, Liberman N, Takashima K, Zaccara S, Guez T, Vasseur JJ, Debart F, Aravind L et al (2019) Identification of the m(6)Am methyltransferase PCIF1 reveals the location and functions of m(6)Am in the transcriptome. Mol Cell 75(3):631.e8–643.e8
42. Sendinc E, Valle-Garcia D, Dhall A, Chen H, Henriques T, Navarrete- Perea J, Sheng W, Gygi SP, Adelman K, Shi Y (2019) PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression. Mol Cell 75(3):620.e9–630.e9
43. Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, Dai Q, Di Segni A, Salmon-Divon M, Clark WC et al (2016) The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature 530:441–446
44. Li X, Xiong X, Yi C (2016b) Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods 14:23–31
45. Safra M, Sas-Chen A, Nir R, Winkler R, Nachshon A, Bar-Yaacov D, Erlacher M, Rossmanith W, Stern-Ginossar N, Schwartz S (2017) The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 551:251–255
46. Schaefer M, Pollex T, Hanna K, Lyko F (2009) RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res 37:e12
47. Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, Parker BJ, Suter CM, Preiss T (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40:5023–5033
48. Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–146
49. Li X, Zhu P, Ma S, Song J, Bai J, Sun F, Yi C (2015) Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol 11:592–597
50. Zhang LS, Liu C, Ma H, Dai Q, Sun HL, Luo G, Zhang Z, Zhang L, Hu L, Dong X et al (2019a) Transcriptome-wide mapping of internal N(7)-methylguanosine methylome in mammalian mRNA. Mol Cell 4(6):1304.e8–1316.e8
51. Malbec L, Zhang T, Chen YS, Zhang Y, Sun BF, Shi BY, Zhao YL, Yang Y, Yang YG (2019) Dynamic methylome of internal mRNA N (7)-methylguanosine and its regulatory role in translation. Cell Res.https://doi.org/10.1016/j.molp.2019.12.007
52. Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465
53. Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6:615–624
制版人:SY