『水系锌电』河北大学张宁团队EnSM:一种本征安全低浓度水合有机电解液用于稳定金属锌负极
研究背景
研究亮点
图文导读
(a-c)将1 m Zn(BF4)2溶于(a)TMP、(b)EG和(c)AN溶剂中组成的不同电解液照片及对应的点火照片。(d)室温下的挥发性测试和(e)在1 mV s-1下,1 m Zn(BF4)2/TMP和1 m ZnSO4/H2O电解液的电化学窗口。不同浓度的Zn(BF4)2/TMP电解液的(f)拉曼光谱和(g,h)红外光谱。(i)MD模拟的快照和(j)1 m Zn(BF4)2/TMP的典型Zn2+溶剂化结构。(k)1 m Zn(BF4)2/TMP中Zn2+-O(H2O)、Zn2+-O(TMP)和Zn2+-F(BF4-)的RDF图及相应的配位数。
图2. 不同电解液中锌沉积行为和形貌的表征.
(a)1 m Zn(BF4)2/TMP和(b)1 m ZnSO4/H2O在5mA cm−2下的原位光学锌沉积行为照片。(c)Zn(BF4)2/TMP和(d)ZnSO4/H2O中的Zn沉积示意图。(e-g)1 m Zn(BF4)2/TMP和(h-j)1 m ZnSO4/H2O中沉积锌(5 mAh cm-2)的SEM图像和光学照片(插图)。
图3. 锌负极在电解液中的稳定性.
(a)浸泡在不同电解液中Zn电极的XRD图谱。(b)浸泡在1 m ZnSO4/H2O和(c)1 m Zn(BF4)2/TMP中的Zn电极的SEM图片。(d)Tafel曲线和(e)不同电解液中锌电沉积的计时电流曲线。(f)1 m Zn(BF4)2/TMP和(g)1 m ZnSO4/H2O电解液在Zn电极上的接触角。
图4. 锌电极电化学性能测试.
(a)Zn//Cu电池在不同电解液中的平均库伦效率测试。在1 mA cm-2,1 mAh cm-2条件下(b)Zn//Cu电池的循环稳定性和(c)对应的充放电曲线。Zn//Zn电池在不同电解液中在(d)1 mA cm−2,0.5 mAh cm−2和(e)5 mA cm−2,2.5 mAh cm−2条件下的长循环性能。(f)本工作与已报道的RZBs电解液进行比较。
(a)1 m Zn(BF4)2/TMP和(b)1 m ZnSO4/H2O中循环后的Zn电极的SEM图像和(c)XRD图谱。(d)在1 m Zn(BF4)2/TMP中循环后Zn电极的C 1s、F 1s、P 2p和Zn 2p的XPS图谱。
图6. 全电池电化学性能.
(a)Zn//VOH电池在0.5 A g−1下的循环性能及对应的(b)1 m Zn(BF4)2/TMP和1 m ZnSO4/H2O电解液的充放电曲线。(c)1 A g−1下的长循环性能和(d)Zn//VOH电池的倍率性能。(e)VOH正极在1 m Zn(BF4)2/TMP和1 m ZnSO4/H2O中浸泡不同时间的光学图像。(f)大负载量下Zn//VOH的循环性能及其放电曲线。
研究结论
文献信息
Guoqiang Ma, Shengli Di, Yuanyuan Wang, Wentao Yuan, Xiuwen Ji, Kaiyue Qiu, Mengyu Liu, Xueyu Nie, Ning Zhang*, Zn metal anodes stabilized by an intrinsically safe, dilute, and hydrous organic electrolyte, Energy Storage Materials
https://doi.org/10.1016/j.ensm.2022.10.043
感谢各位读者的支持与宣传,同时欢迎广大科研人员投稿与合作,具体事宜可发送邮件至aqueousenergystor@126.com,或添加下方小编微信,我们将在第一时间回复您。
← 长按添加小编微信~
水系储能
点个
在看
你最好看