基于 Hudi 和 Kylin 构建准实时 数据仓库(附视频)
Editor's Note
在近期的 Apache Kylin × Apache Hudi Meetup 直播上,Apache Kylin PMC Chair 史少锋和 Kyligence 解决方案工程师刘永恒就 Hudi + Kylin 的准实时数仓实现进行了介绍与演示与分享(附视频)。
The following article is from apachekylin Author 史少锋&刘永恒
热文回顾:Kylin 新定位:分析型数据仓库
今天我的分享主题是《基于 Hudi 和 Kylin 构建准实时、高性能数据仓库》,除了讲义介绍,还安排了 Demo 实操环节。下面是今天的内容:
01
数据库、数据仓库
02
数据湖
但是,数据湖开始设计主要是用于数据的存储,解决的是容量的水平扩展性、数据的持久性和高可用性,没有太多考虑数据的更新和删除。例如 HDFS 上通常是将文件分块(block)存储,一个 block 通常一两百兆;S3 同样也是类似,大的 block 可以节省管理开销,并且这些文件格式不一,通常没有高效的索引。如果要修改文件中的某一行记录,对于数据湖来说是非常难操作的,因为它不知道要修改的记录在哪个文件的哪个位置,它提供的方式仅仅是做批量替换,代价比较大。
另外一个极端的存储则是像 HBase 这样的,提供高效的主键索引,基于主键就可以做到非常快的插入、修改和删除;但是 HBase 在大范围读的效率比较低,因为它不是真正的列式存储。对于用户来说面临这么两个极端:一边是非常快的读存储(HDFS/S3),一边是非常快速的写存储;如果取中间的均衡比较困难。有的时候却需要有一种位于两者之间的方案:读的效率要高,但写开销不要那么大。
03
数据仓库的加载链路
这里有一个生动的例子,是前不久从一个朋友那里看到的,各位可以感受一下。
可以看到在过去的方案是非常复杂的,又要用 MPP 又要用数据湖,还要用 Kylin,在这中间数据频繁的被导出导入,浪费是非常严重的,而且维护成本高,容易出错,因为数据湖和数据库之间的文件格式往往还存在兼容性问题。
04
Hudi:新一代数据湖项目
05
基于 Hudi+Kylin 的准实时数仓实现
这里再总结一下,使用 Hudi 来做 DW 数据加载的前置存储给我们带来的诸多的好处:首先,它可以支持准实时的插入、修改和删除,对保护用户数据隐私来说是非常关键的(例如 GDPR );它还可以控制小文件,减少对 HDFS 的压力;第二,Hudi 提供了多种访问视图,可以根据需要去选择不同的视图;第三,Hudi 是基于开放生态的,存储格式使用 Parquet 和 Avro,目前主要是使用 Spark 来做数据操作,未来也可以扩展;支持多种查询引擎,所以在生态友好性上来说,Hudi 是远远优于另外几个竞品的。
06
使用 Kyligence Cloud 现场演示
目前 Kyligence Cloud 已经不需要依赖 Hadoop 了,直接使用 VM 来做集群的计算力,内置了 Spark 做分布式计算,使用 S3 做数据存储;还集成了 Kylignece Insight 做可视化分析,底层可以对接常见的数据源,也包括 Hudi,在最新发布版的 Hudi 已经被集成进来了。
接下来,刘永恒将带来 Live Demo,他是从业务库到处数据加载到 Hudi 中,然后 Hudi 随后就可以从这当中来被访问。接下来他会演示做一些数据修改,再把这个数据修改合并到 Hudi,在 Hudi 中就可以看到这些数据的改变,接下来的时间就交给刘永恒。
想了解刘永恒老师的 Demo 详情?
请点击播放下方现场回顾视频,拖动进度条至 19:50 的位置,即可开始观看。↓↓↓↓↓
如果感觉文章有用,记得分享给你的朋友哦
(在看也行)
点击下方图片即可阅读
Netflix:如何打造实时 Realtime ETL 平台?
公众号粉丝报名
可领取100元优惠码和在线模拟题库题库覆盖率90+!尽我所能帮到大家非诚勿扰,谢谢!欢迎加入 技术交流群。戳:快来加入数据交流群吧
推荐阅读
▼ 福利时刻 ▼
01. 后台回复「经典」,即可领取大数据数仓经典书籍。
02. 后台回复「中台」,即可领取大厂中台架构高清ppt。
03. 后台回复「加群」,或添加小助微信ID:iom1128 拉您入群(备注方向:大数据|数仓|分析|Flink|资源|python|)或领取资料。
Q: 关于数据仓库,你还想了解什么?
欢迎留言区与大家分享
觉得不错,请把这篇文章分享给你的朋友哦
入群请联系小助手:iom1128『紫霞仙子』
更多精彩,请戳"阅读原文"到"数仓之路"查看
!关注不迷路~ 各种干货、资源定期分享!
学习小密圈