查看原文
其他

神奇的数学(IV)- 挑剔的河神

行者之心 心镜818
2024-11-26

数学的伟大在于可以正确认识自己的极限,虽然这绝对不是一件容易的事。河水泛滥,河神要求神龛大一倍……


01

尺规做图


数学的伟大在于可以正确认识自己的极限,虽然这绝对不是一件容易的事。古希腊人发明了几何学,其中一项技术就是尺规作图。意思是只允许用一个没有刻度的直尺和一个圆规去画任何想要的图案。

虽然这两样工具都非常简单,然而人的才智却可以通过它们得以充分发挥,如同一位杰出的画师可以用一只笔描绘出美丽的世界,一个数学家仅通过一把直尺和一个圆规就可以构造出异常丰富复杂的几何图形(想想看七巧板可以拼凑的复杂图案)。当然有些图形是非常不容易实现的,比如正17边形。然而天才数学家高斯就成功地使用尺规作图画出完美的正17边形,他对自己的这项成就如此自豪,以至于他遗嘱中要求在他的墓碑上
刻上一个正17边形。

画17边型的步骤示意图


02


挑剔的河神


然而在人们通过尺规作图完成一项又一项惊人业绩时,有一件看起来非常简单的问题却难倒了当时所有的数学家。


事情是这样的,古希腊的一条河不知出于什么原因突然连年河水泛滥,人们去找河神的祭司。祭司在经过一番仪式和河神取得联系后告诉大家,河神抱怨他的神龛(一个正立方体的盒子)太小了,需要把它的体积增大一倍,这样河神就会满意,河水也不会泛滥了。

众人一听到这个要求后感觉很简单,于是就做了一个长度是原来两倍的正立方体盒子献给河神。然而那年河水反而泛滥得更厉害了。人们于是去质问祭司到底怎么回事。祭司回答道,河神要求神龛体积增大一倍,但你们把边长增大一倍,体积实际是原来的8倍,这当然更不合河神心意了,必须做一个神龛体积是原来的二倍。
我们知道正立方体的体积是边长的三次方。假设原来神龛边长为一,体积也是一,如果要做一个体积为二的正立方体,边长必须是二开三次方。祭司一解释,大家恍然大悟,于是请数学家用尺规作图方法做出二开三次方。可是这个看似不难的问题则一下让所有数学家大伤脑筋。上一次我们讲到二开二次方,也就是根号二√2。用尺规作图法做出√2非常容易,只需要做出两边都是1的直角三角形,那么斜边就是√2。但所以数学家努力了几个月甚至几年都没能做出二开三次方,所以河神的怒气也就很多年都没有平息掉。
这个问题一直萦绕着数学家的脑子几百年。人们尝试许多非常精巧复杂的办法但都未能达到满意的结果。


求河神心理阴影面积示意图


03

指出自身极限

后来在现代数学的发展中,人们终于意识到尺规作图的局限性,最后成功证明尺规作图无论方法多么巧妙,绝无可能做出二开三次方,一个困扰数学家多年的数学难题终于证明不可解。

如果从实用的角度看二开三次方约等于1.2599。从工艺上制作一个体积大一倍的正立方体根本不是什么难题,但从纯数学的角度研究,这就是一个非常有趣,有挑战性的问题。数学的魅力正在于此,它给出真正意义上的无穷可能,但还可以明确指出自己的极限,最伟大的数学家就是那些能构造出新的概念来一次次突破现有极限的先驱。


(图片均为网图)

继续滑动看下一个
心镜818
向上滑动看下一个

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存