其他
ChatGLM:千亿基座的对话模型启动内测,单卡版模型已全面开源
充分的中英双语预训练:ChatGLM-6B 在 1:1 比例的中英语料上训练了 1T 的 token 量,兼具双语能力。 优化的模型架构和大小:吸取 GLM-130B 训练经验,修正了二维 RoPE 位置编码实现,使用传统 FFN 结构。6B(62亿)的参数大小,也使得研究者和个人开发者自己微调和部署 ChatGLM-6B 成为可能。 较低的部署门槛:FP16 半精度下,ChatGLM-6B 需要至少 13 GB 的显存进行推理,结合模型量化技术,这一需求可以进一步降低到 10GB(INT8)和 6GB(INT4),使得 ChatGLM-6B 可以部署在消费级显卡上。 更长的序列长度:相比 GLM-10B(序列长度 1024),ChatGLM-6B 序列长度达 2048,支持更长对话和应用。 人类意图对齐训练:使用了监督微调(Supervised Fine-Tuning)、反馈自助(Feedback Bootstrap)、人类反馈强化学习(RLHF)等方式,使模型初具理解人类指令意图的能力。输出格式为 markdown,方便展示。
相对较弱的模型记忆和语言能力。在面对许多事实性知识任务时,ChatGLM-6B 可能会生成不正确的信息,也不太擅长逻辑类问题(如数学、编程)的解答。 可能会产生有害说明或有偏见的内容:ChatGLM-6B 只是一个初步与人类意图对齐的语言模型,可能会生成有害、有偏见的内容。 较弱的多轮对话能力:ChatGLM-6B 的上下文理解能力还不够充分,在面对长答案生成和多轮对话的场景时,可能会出现上下文丢失和理解错误的情况。