查看原文
其他

脑电分析系列[MNE-Python-2]| MNE中数据结构Epoch及其创建方法

Rose 脑机接口社区 2022-04-26


Epoch概念简介


相信很多人第一次接触epoch时,都会有疑惑,这个词在EEG中到底指的是什么。
下面将详细说明一下。

从连续的脑电图信号中提取一些特定时间窗口的信号,这些时间窗口可以称作为epochs.
由于EEG是连续收集的,要分析脑电事件相关的电位时,需要将信号"切分"成时间片段,这些时间片段被锁定到某个事件(例如刺激)中的时间片段。
比如在EEGLAB分析中,EEGLAB将连续数据视为由一个较长的时期(long epoch)组成,而将数据切分后,它由多个较小的时期(small epoch)组成。

举个例子
假设我们有一个长度为60s的信号x,采样频率为1 Hz.
脑电信号的矩阵表示为1x60矩阵,如果将信号划分成一些2s的信号,则将有30个peoch(信号中每2s就是一个epoch)

在MNE中,Epoch对象是一种把连续型数据作为时间段集合的表示方法,
形状为(n_events,n_channels,n_times)的数组形式:

创建Epochs对象方式有三种:

(1)通过Raw对象和事件事件点(event times)
(2)通过读取.fif文件数据生成Epoch对象
(3)通过mne.EpochsArray从头创建Epoch对象

这里利用方式2和方式3创建Epochs对象

a. 读取fif文件创建Epoch对象

步骤:

1)读取fif文件,构建raw对象;

2)创建event对象;

3)创建epoch对象;

4)对epoch进行叠加平均得到evoked对象;

5)绘制evoked。

import mnefrom mne import iofrom mne.datasets import sample
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif'event_id, tmin, tmax = 1, -0.2, 0.5
# 读取fif文件,创建raw对象raw = io.read_raw_fif(raw_fname)# 读取包含event的fif文件,创建event对象events = mne.read_events(event_fname)
""" 挑选通道:EEG + MEG - bad channels """raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 morepicks = mne.pick_types(raw.info, meg=True, eeg=False, stim=True, eog=True, exclude='bads')
# 读取Epoch数据epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=(None, 0), preload=True, reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))"""对epochs数据进行求平均获取诱发响应"""evoked = epochs.average()
evoked.plot(time_unit='s')plt.show()


Read a total of 4 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Average EEG reference (1 x 60) idle
Range : 6450 ... 48149 = 42.956 ... 320.665 secs
Ready.
Current compensation grade : 0
72 matching events found
Applying baseline correction (mode: mean)
Not setting metadata
Created an SSP operator (subspace dimension = 3)
4 projection items activated
Loading data for 72 events and 106 original time points ...
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on MAG : ['MEG 1711']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
17 bad epochs dropped

b. 从头创建Epoch对象


在实际过程中,有时需要从头构建数据来创建Epochs对象,
方式:利用mne.EpochsArray创建Epochs对象,创建时直接构建numpy数组即可,数组的形状必须是(n_epochs, n_chans, n_times)

数据对应的单位:
V: eeg, eog, seeg, emg, ecg, bio, ecog

T: mag

T/m: grad

M: hbo, hbr

Am: dipole

AU: misc



案例1

import mneimport numpy as npimport matplotlib.pyplot as plt

第一步:构建数据

构建一个大小为10x5x200的三维数组,数组中数据是随机数;

第一维数据表示:10 epochs

第二维数据表示:5 channels

第三维数据表示:2 seconds per epoch

# 采样频率sfreq = 100data = np.random.randn(10, 5, sfreq * 2)
# 创建一个info结构info = mne.create_info( ch_names=['MEG1', 'MEG2', 'EEG1', 'EEG2', 'EOG'], ch_types=['grad', 'grad', 'eeg', 'eeg', 'eog'], sfreq=sfreq)

第二步:构建events

在创建Epochs对象时,必须提供一个"events"数组,

事件(event)描述的是某一种波形(症状)的起始点,其为一个三元组,形状为(n_events,3):
第一列元素以整数来描述的事件起始采样点;
第二列元素对应的是当前事件来源的刺激通道(stimulus channel)的先前值(previous value),该值大多数情况是0;
第三列元素表示的是该event的id。

events = np.array([ [0, 0, 1], [1, 0, 2], [2, 0, 1], [3, 0, 2], [4, 0, 1], [5, 0, 2], [6, 0, 1], [7, 0, 2], [8, 0, 1], [9, 0, 2],])

设置事件的id

如果是dict,则以后可以使用这些键访问关联的事件。示例:dict(听觉=1,视觉=3)

如果是int,将创建一个id为string的dict。

如果是列表,则使用列表中指定ID的所有事件。

如果没有,则所有事件都将与一起使用,并使用与事件id整数对应的字符串整数名称创建dict。

# 创建event id,受试者或者微笑或者皱眉event_id = dict(smiling=1, frowning=2)"""tmin:event开始前的时间,如果未指定,则默认为0"""# 设置事件开始前时间为-0.1stmin = -0.1

第三步:创建epochs对象

"""利用mne.EpochsArray创建epochs对象"""custom_epochs = mne.EpochsArray(data, info, events, tmin, event_id)print(custom_epochs)# 绘制_ = custom_epochs['smiling'].average().plot(time_unit='s')

案例2

import numpy as npimport neo
import mneimport matplotlib.pyplot as plt
"""设置event id,用来识别events."""event_id = 1# 第一列表示样本编号events = np.array([[200, 0, event_id], [1200, 0, event_id], [2000, 0, event_id]]) # List of three arbitrary events
sfreq = 1000 # 采样频率times = np.arange(0, 10, 0.001) # Use 10000 samples (10s)
sin = np.sin(times * 10) # 乘以 10 缩短周期cos = np.cos(times * 10)
"""利用sin和cos创建一个2个通道的700 ms epochs的数据集
只要是(n_epochs, n_channels, n_times)形状的数据,都可以被用来创建"""epochs_data = np.array([[sin[:700], cos[:700]], [sin[1000:1700], cos[1000:1700]], [sin[1800:2500], cos[1800:2500]]])
ch_names = ['sin', 'cos']ch_types = ['mag', 'mag']info = mne.create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
epochs = mne.EpochsArray(epochs_data, info=info, events=events, event_id={'arbitrary': 1})
epochs.plot(scalings='auto' )plt.show()


编译作者:BrainLover编译

不用于商业行为,转载请联系后台

若有侵权,请后台留言,管理员即时删侵!

更多阅读

[MNE-Python-1]| MNE-Python详细安装与使用

[MNE-Python-2]| MNE中数据结构Raw及其用法简介

Nature子刊:利用闭环脑机接口缓解疼痛感

脑-脑接口:人类大脑利用意念控制老鼠走迷宫

投稿通道

如何让你的工作让更多人知晓和受益?

脑机接口社区就是这样一个连接学界、

企业界和爱好者的平台渠道。


区鼓励高校实验室、企业或个人在我们平台上分享优质内容。


稿件要求

稿件系个人原创作品,若已在其他平台发表,请明确标注。

稿件一经录取,便提供稿费!

投稿通道

微信扫码,备注:投稿+姓名+单位

微信交流群,请扫码上方微信

(备注:姓名+单位+专业/领域行业)

QQ交流群:913607986

你的每一次在看,我都很在意!

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存