查看原文
其他

北理工研究团队在脑-控移动机器人上取得重要进展

脑机接口社区 脑机接口社区 2022-04-26


脑-控移动机器人是用户通过脑电信号来操控移动机器人完成特定任务的智能系统。以往的研究主要聚焦于提高脑-控移动机器人的安全性,而系统的整体性能,特别是鲁棒性没有得到深入探索。北京理工大学研究团队针对基于SSVEP-BCI的脑-控移动机器人,在传统的脑机接口(BCI)模块之后,发展了一个鲁棒的非线性预测控制器来提高系统的整体性能(如导航性能、安全性和鲁棒性)。提出的控制器由级联的预测控制器和滑模控制器组成。预测控制器将对用户的意图跟踪与系统安全保证目标集成一个优化问题,在保证系统安全的前提下最小化侵入用户的意图,给出期望的控制速度。进而由设计的滑模控制器实现鲁棒的速度跟踪。该研究对人在环内的脑-控移动机器人仿真平台进行了全面的系统性能分析。在此基础上,搭建了实际的脑-控移动机器人系统,并完成了性能测试。


今天社区分享一篇毕教授研究团队在提高脑控移动机器人性能方面所做的研究。
脑-控移动机器人是用户通过脑电信号来操控移动机器人完成特定任务的智能系统以往的研究主要聚焦于提高脑-控移动机器人的安全性,而系统的整体性能,特别是鲁棒性没有得到深入探索。北京理工大学机械与车辆学院毕路拯教授团队联合美国新泽西州立罗格斯大学(Rutgers,The State University of New Jersey) Jingang Yi教授在脑-控移动机器人的人机协同控制上取得重要进展。该项研究成果以《Sliding-Mode NonlinearPredictive Control of Brain-Controlled Mobile Robots》为题,发表在系统与控制方向与计算机控制论方向顶级期刊《IEEE Transactions on Cybernetics》(DOI: 10.1109/TCYB.2020.3031667)。论文第一作者为其团队博士研究生李鸿岐,毕路拯教授为通讯作者。


研究人员通过研究发现,在基于SSVEP-BCI的脑-控移动机器人的人在环内系统仿真中,使用提出的控制器相比较于未使用时(直接的BCI控制),系统的任务完成率显著提高了18%,对不同的导航目的地,任务完成时间均大大减少,且没有任何碰撞发生。存在外界干扰时,机器人的速度响应更平稳,且可更快恢复到稳态。总体来说,系统的导航性能得到明显改善,安全性得到了完全保障,同时鲁棒性被显著增强。
控制系统架构和控制器研究人员提出的控制器设计结构如图1所示。控制系统主要包括BCI模块、基于SMC的非线性预测控制器和机器人系统三部分。人类首先根据移动机器人和周围环境的信息(例如机器人周围障碍物的位置)做出运动控制决策。脑机接口模块将脑电图信号解释为机器人的角速度。最后,通过基于SMC的非线性预测控制器得到机器人的控制输入。

图1 脑-控移动机器人的系统结构


其中BCI模块包括BCI模型和接口模型。在实验中,研究人员使用基于平视显示(HUD)的稳态视觉诱发电位(SSVEP)接口,该接口是在他们在之前的工作[13]中开发的。如图2所示,所采用的脑机接口由SSVEP视觉刺激、脑电信号测量和脑机接口指令解释计算机组成。该计算机用于EEG数据预处理、特征提取、分类和指令量化。

图2 BCI模块
实验分析
研究人员对所提出的控制器在系统安全性、系统导航性能等多方面进行了对比分析。
研究人员让受试者(受试者4)在使用了所提出的控制器和直接BCI控制两种方式下,进行了不同任务目的地的在线机器人控制,下图为控制轨迹,经过对比,结果表明,该控制器在系统安全方面是有效的。

图3 系统的任务完成轨迹


研究人员对所提出的系统在(a)任务完成率、(b)任务平均完成时间、(c)所述控制器与BCI直接控制的控制下的总碰撞次数等方面的性能进行了比较,比较结果如下图所示。

(a)系统的任务完成率

(b)系统的平均任务完成时间

(c)系统的总碰撞次数

图4  系统导航性能


图5和图6显示了受试者在任务A中使用所提出的控制器和BCI直接控制产生的在线机器人速度。从图中可以看到,在没有干扰情况下,由脑机接口直接控制和由该控制器控制都具有良好的线速度和角速度跟踪能力

图5 存在外界脉冲干扰时,系统的线速度响应曲线


图6 存在外界脉冲干扰时,系统的角速度响应曲线


此外,作者还进一步搭建了脑-控移动机器人实物系统平台,并进行了对应的性能测试。结果表明基于提出控制器的系统具有更高的任务完成率、更短的平均完成时间且没有碰撞。

图7 脑-控移动机器人实物实验场景

表1 使用提出的控制器和直接控制的实物系统性能比较


毕教授研究团队针对基于SSVEP-BCI的脑-控移动机器人,提出的由级联的预测控制器和滑模控制器组成的控制器。预测控制器将对用户的意图跟踪与系统安全保证目标集成一个优化问题,在保证系统安全的前提下最小化侵入用户的意图,给出期望的控制速度。进而由设计的滑模控制器实现鲁棒的速度跟踪。控制系统明显提高了基于SSVEP-BCI的脑-控移动机器人系统性能,对未来脑-控移动机器人的发展具有重要的实用价值。

通讯作者简介 

毕路拯博士:

现为北京理工大学机械与车辆学院教授、博士生导师、机电系统与装备研究所所长。他的研究领域包括脑机接口、脑控车辆与机器人、智能人机交互与控制、多机器人协同等。他先后在美国University of Michigan, Ann Arbor和新加坡南洋理工大学作过访问学者。他是IEEE高级会员、担任IEEE/ASME AIM, ACC, ASME DSCC等的编委,国家自然基金、教育部博士后基金以及浙江省自然基金等的评审专家,世界机器人大赛-BCI脑控机器人专家组成员。


毕教授以第一或通讯作者在包括国际著名期刊IEEE TITS、IEEE TCYB、IEEE TBME、IEEE TNSRE、IEEE TSMC和IEEE THMS等发表论文80余篇(含IEEE Transactions 20篇)。以第一者出版学术专著一部。获教育部自然科学二等奖(排二)。第一发明人获授权国家发明专利11项。主持国家自然基金面上项目(3项)、国家自然基金青年基金、中央军委科技委前沿科技创新项目、国家自然基金重点项目(子课题)等。2016年被评选为北京理工大学首届十佳导师。获北京理工大学优秀博士论文指导教师(1次)和优秀硕士论文指导教师称号(3次)。获北京理工大学首届"长寿秀伶"奖教金。

不用于商业行为,转载请联系后台

若有侵权,请后台留言,管理员即时删侵!

更多阅读

11张PPT看懂中国脑机接口产业现状

上海交大和MIT提出的软性机械手,可提供实时的触觉控制

用3D打印快速制作软生物电子植入物原型,有助于将大脑连接到电脑

“意念写字”效率提升 靠“脑补”过日子还有多远

脑电数据的Epoching处理

注意力缺陷障碍可以通过训练大脑来管理

脑机产业迎来“新标准”,CESI发布《脑机接口标准化白皮书》

2021世界机器人大赛脑机接口系列视频讲座之SSVEP相关

投稿通道

如何让你的工作让更多人知晓和受益?

脑机接口社区就是这样一个连接学界、

企业界和爱好者的平台渠道。


区鼓励高校实验室、企业或个人在我们平台上分享优质内容。


稿件要求

稿件系个人原创作品,若已在其他平台发表,请明确标注。

稿件一经录取,便提供稿费!

投稿通道

微信扫码,备注:投稿+姓名+单位

微信交流群,请扫码上方微信

(备注:姓名+单位+专业/领域行业)

QQ交流群:913607986

你的每一次在看,我都很在意!

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存