查看原文
其他

EEGNet: 神经网络应用于脑电信号

Rose 脑机接口社区 2022-04-26


脑机接口(BCI)使用神经活动作为控制信号,实现与计算机的直接通信。这种神经信号通常是从各种研究透彻的脑电图(EEG)信号中挑选出来的。卷积神经网络(CNN)主要用来自动特征提取和分类,其在计算机视觉和语音识别领域中的使用已经很广泛。CNN已成功应用于基于EEG的BCI;但是,CNN主要应用于单个BCI范式,在其他范式中的使用比较少,论文作者提出是否可以设计一个CNN架构来准确分类来自不同BCI范式的EEG信号,同时尽可能地紧凑(定义为模型中的参数数量)。


该论文介绍了EEGNet,这是一种用于基于EEG的BCI的紧凑型卷积神经网络。论文介绍了使用深度和可分离卷积来构建特定于EEG的模型,该模型封装了脑机接口中常见的EEG特征提取概念。论文通过四种BCI范式(P300视觉诱发电位、错误相关负性反应(ERN)、运动相关皮层电位(MRCP)和感觉运动节律(SMR)),将EEGNet在主体内和跨主体分类方面与目前最先进的方法进行了比较。结果显示,在训练数据有限的情况下,EEGNet比参考算法具有更强的泛化能力和更高的性能。同时论文也证明了EEGNet可以有效地推广到ERP和基于振荡的BCI。


实验结果如下图,P300数据集的所有CNN模型之间的差异非常小,但是MRCP数据集却存在显著的差异,两个EEGNet模型的性能都优于所有其他模型。对于ERN数据集来说,两个EEGNet模型的性能都优于其他所有模型(p < 0.05)。


EEGNet网络原理


EEGNet网络结构图:


EEGNet原理架构如下:

EEGNet网络实现


import numpy as npfrom sklearn.metrics import roc_auc_score, precision_score, recall_score, accuracy_scoreimport torchimport torch.nn as nnimport torch.optim as optimfrom torch.autograd import Variableimport torch.nn.functional as Fimport torch.optim as optim

定义网络模型:

class EEGNet(nn.Module): def __init__(self): super(EEGNet, self).__init__() self.T = 120
# Layer 1 self.conv1 = nn.Conv2d(1, 16, (1, 64), padding = 0) self.batchnorm1 = nn.BatchNorm2d(16, False)
# Layer 2 self.padding1 = nn.ZeroPad2d((16, 17, 0, 1)) self.conv2 = nn.Conv2d(1, 4, (2, 32)) self.batchnorm2 = nn.BatchNorm2d(4, False) self.pooling2 = nn.MaxPool2d(2, 4)
# Layer 3 self.padding2 = nn.ZeroPad2d((2, 1, 4, 3)) self.conv3 = nn.Conv2d(4, 4, (8, 4)) self.batchnorm3 = nn.BatchNorm2d(4, False) self.pooling3 = nn.MaxPool2d((2, 4))
# 全连接层 # 此维度将取决于数据中每个样本的时间戳数。 # I have 120 timepoints. self.fc1 = nn.Linear(4*2*7, 1)

def forward(self, x): # Layer 1 x = F.elu(self.conv1(x)) x = self.batchnorm1(x) x = F.dropout(x, 0.25) x = x.permute(0, 3, 1, 2)
# Layer 2 x = self.padding1(x) x = F.elu(self.conv2(x)) x = self.batchnorm2(x) x = F.dropout(x, 0.25) x = self.pooling2(x)
# Layer 3 x = self.padding2(x) x = F.elu(self.conv3(x)) x = self.batchnorm3(x) x = F.dropout(x, 0.25) x = self.pooling3(x)
# 全连接层 x = x.view(-1, 4*2*7) x = F.sigmoid(self.fc1(x))        return x

定义评估指标:

    acc:准确率

    auc:AUC 即 ROC 曲线对应的面积

    recall:召回率

    precision:精确率

    fmeasure:F值

def evaluate(model, X, Y, params = ["acc"]): results = [] batch_size = 100
predicted = []
for i in range(len(X)//batch_size): s = i*batch_size e = i*batch_size+batch_size
inputs = Variable(torch.from_numpy(X[s:e])) pred = model(inputs)
predicted.append(pred.data.cpu().numpy())
inputs = Variable(torch.from_numpy(X)) predicted = model(inputs) predicted = predicted.data.cpu().numpy() """ 设置评估指标: acc:准确率 auc:AUC 即 ROC 曲线对应的面积 recall:召回率 precision:精确率 fmeasure:F值 """ for param in params: if param == 'acc': results.append(accuracy_score(Y, np.round(predicted))) if param == "auc": results.append(roc_auc_score(Y, predicted)) if param == "recall": results.append(recall_score(Y, np.round(predicted))) if param == "precision": results.append(precision_score(Y, np.round(predicted))) if param == "fmeasure": precision = precision_score(Y, np.round(predicted)) recall = recall_score(Y, np.round(predicted)) results.append(2*precision*recall/ (precision+recall)) return results

构建网络EEGNet,并设置二分类交叉熵和Adam优化器

# 定义网络net = EEGNet()# 定义二分类交叉熵 (Binary Cross Entropy)criterion = nn.BCELoss()# 定义Adam优化器optimizer = optim.Adam(net.parameters())

创建数据集

"""生成训练数据集,数据集有100个样本训练数据X_train:为[0,1)之间的随机数;标签数据y_train:为0或1"""X_train = np.random.rand(100, 1, 120, 64).astype('float32')y_train = np.round(np.random.rand(100).astype('float32')) """生成验证数据集,数据集有100个样本验证数据X_val:为[0,1)之间的随机数;标签数据y_val:为0或1"""X_val = np.random.rand(100, 1, 120, 64).astype('float32')y_val = np.round(np.random.rand(100).astype('float32'))"""生成测试数据集,数据集有100个样本测试数据X_test:为[0,1)之间的随机数;标签数据y_test:为0或1"""X_test = np.random.rand(100, 1, 120, 64).astype('float32')y_test = np.round(np.random.rand(100).astype('float32'))

训练并验证

batch_size = 32# 训练 循环for epoch in range(10): print("\nEpoch ", epoch)
running_loss = 0.0 for i in range(len(X_train)//batch_size-1): s = i*batch_size e = i*batch_size+batch_size
inputs = torch.from_numpy(X_train[s:e]) labels = torch.FloatTensor(np.array([y_train[s:e]]).T*1.0)
# wrap them in Variable inputs, labels = Variable(inputs), Variable(labels)
# zero the parameter gradients optimizer.zero_grad()
# forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward()
optimizer.step()
running_loss += loss.item()
# 验证 params = ["acc", "auc", "fmeasure"] print(params) print("Training Loss ", running_loss) print("Train - ", evaluate(net, X_train, y_train, params)) print("Validation - ", evaluate(net, X_val, y_val, params)) print("Test - ", evaluate(net, X_test, y_test, params))
Epoch 0['acc', 'auc', 'fmeasure']
Training Loss 1.6107637286186218Train - [0.52, 0.5280448717948718, 0.6470588235294118]Validation - [0.55, 0.450328407224959, 0.693877551020408]Test - [0.54, 0.578926282051282, 0.6617647058823529]
Epoch 1['acc', 'auc', 'fmeasure']Training Loss 1.5536684393882751Train - [0.45, 0.41145833333333337, 0.5454545454545454]Validation - [0.55, 0.4823481116584565, 0.6564885496183207]Test - [0.65, 0.6530448717948717, 0.7107438016528926]
Epoch 2['acc', 'auc', 'fmeasure']Training Loss 1.5197088718414307Train - [0.49, 0.5524839743589743, 0.5565217391304348]Validation - [0.53, 0.5870279146141215, 0.5436893203883495]Test - [0.57, 0.5428685897435898, 0.5567010309278351]
Epoch 3['acc', 'auc', 'fmeasure']Training Loss 1.4534167051315308Train - [0.53, 0.5228365384615385, 0.4597701149425287]Validation - [0.5, 0.48152709359605916, 0.46808510638297873]Test - [0.61, 0.6502403846153847, 0.5517241379310345]
Epoch 4['acc', 'auc', 'fmeasure']Training Loss 1.3821702003479004Train - [0.46, 0.4651442307692308, 0.3076923076923077]Validation - [0.47, 0.5977011494252874, 0.29333333333333333]Test - [0.52, 0.5268429487179488, 0.35135135135135137]
Epoch 5['acc', 'auc', 'fmeasure']Training Loss 1.440490186214447Train - [0.56, 0.516025641025641, 0.35294117647058826]Validation - [0.36, 0.3801313628899836, 0.2]Test - [0.53, 0.6113782051282052, 0.27692307692307694]
Epoch 6['acc', 'auc', 'fmeasure']Training Loss 1.4722238183021545Train - [0.47, 0.4194711538461539, 0.13114754098360656]Validation - [0.46, 0.5648604269293925, 0.2285714285714286]Test - [0.5, 0.5348557692307693, 0.10714285714285714]
Epoch 7['acc', 'auc', 'fmeasure']Training Loss 1.3460421562194824Train - [0.51, 0.44871794871794873, 0.1694915254237288]Validation - [0.44, 0.4490968801313629, 0.2]Test - [0.53, 0.4803685897435898, 0.14545454545454545]
Epoch 8['acc', 'auc', 'fmeasure']Training Loss 1.3336675763130188Train - [0.54, 0.4130608974358974, 0.20689655172413793]Validation - [0.39, 0.40394088669950734, 0.14084507042253522]Test - [0.51, 0.5400641025641025, 0.19672131147540983]
Epoch 9['acc', 'auc', 'fmeasure']Training Loss 1.438510239124298Train - [0.53, 0.5392628205128205, 0.22950819672131148]Validation - [0.42, 0.4848111658456486, 0.09375]Test - [0.56, 0.5420673076923076, 0.2413793103448276]

仅用于学术交流,不用于商业行为,若有侵权及疑问,请后台留言,管理员即时删侵!

更多阅读


脑电数据的Epoching处理

脑电公开数据集汇总

马斯克近日表示:Neuralink脑机接口有望明年用于人类

北师大吴倩课题组与合作者共同揭示人类下丘脑发育的时空动态特征

“读心”神经元能够预测他人的行为与决策

硬核玩家改造《上古卷轴V》,脑机接口控制魔法施放

一种新型脑机接口--集成光子芯片的脑机接口是否可行?

新型脑刺激疗法治疗重度抑郁症

脑电与情绪简介




点个在看祝你开心一整天!

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存