拾珍丨王南:规矩方圆,度像构屋——蓟县独乐寺观音阁、山门及塑像之构图比例探析
今年是梁思成先生考察独乐寺并发表《蓟县独乐寺观音阁山门考》一文90周年,《建筑史学刊》微信公众号特别刊发本刊副主编清华大学建筑学院王南老师《规矩方圆,度像构屋——蓟县独乐寺观音阁、山门及塑像之构图比例探析》一文作为纪念,欢迎阅读!
蓟县独乐寺观音阁及山门为中国辽代建筑之代表作,二者在建筑历史、技术与艺术上的价值向来为学术界所推崇。本文在前人研究的基础之上,进一步提出:观音阁与山门从整体到局部皆巧妙运用了基于方圆作图的一系列经典构图比例(尤其是√2和√3/2);不仅如此,观音阁与阁中心的十一面观音立像,山门与其中两尊金刚立像,在构图比例上,亦有着精心考量(特别是观音阁与观音像之间同样包含√2比例关系);再者,观音阁与山门所构成的总平面布局中也含有√2比例关系。类似的构图手法还出现在唐、辽、清时期一些佛殿、阁及塔之中,故而在中国古代佛教建筑的设计中,可能常常将塑像与建筑空间统一设计,使二者之间取得清晰而和谐的比例关系,建筑空间犹如为塑像度身定制的居所,可谓“度像构屋”的设计理念。独乐寺这两座辽代建筑杰作及其内部同样杰出的辽代雕塑所运用的一系列基于规矩方圆作图的构图比例,实际上蕴含着中国古人“天圆地方”的宇宙观和追求天地和谐的文化理念。这些经典构图比例及其背后的文化内涵,可以从《周髀算经》《营造法式》等古代文献,乃至新石器时期的考古遗址中得到有力的诠释。
规矩方圆 度像构屋——蓟县独乐寺
观音阁、山门及塑像之构图比例探析
王 南
1 引言
蓟县独乐寺观音阁及山门皆重建于辽统和二年(984年),为中国辽代建筑之代表作。观音阁与山门在建筑历史、技术与艺术上的价值向来为学术界所推崇:梁思成将其誉为“罕有之宝物”“无上国宝”,陈明达更是宣称独乐寺这两座建筑“若论技术之精湛,艺术之品第,则应推为第一。它是现存古建筑中的上上品,是最佳典范。它涵蕴着许多古代建筑学的宝贵知识,有待我们去发掘阐明”。
观音阁与山门卓越的艺术造诣,离不开设计者对其建筑乃至塑像构图比例的精心推敲。本文在前人研究的基础之上,进一步提出:观音阁与山门从整体到局部皆巧妙运用了基于方圆作图的一系列经典构图比例(尤其是√2和√3/2);不仅如此,观音阁与阁中心的十一面观音立像,山门与其中两尊金刚立像,在构图比例上,亦有着精心考量(特别是观音阁与观音像之间同样包含√2比例关系);再者,观音阁与山门所构成的总平面布局中也含有√2比例关系。
塑像与建筑之间存在清晰的构图比例之设计手法,还广泛运用于唐、辽、清等不同时期的佛教建筑包括殿、阁或塔之中。于是乎,我们可以大胆推测:在中国古代佛教建筑的设计中,可能常常将佛教雕塑与建筑空间统一设计,使塑像与建筑之间取得和谐的比例关系,建筑空间犹如为塑像度身定制的居所,可谓“度像构屋”的设计理念。
独乐寺这两座辽代建筑杰作及其内部同样杰出的辽代雕塑所运用的一系列基于规矩方圆作图的构图比例,实际上蕴含着中国古人“天圆地方”的宇宙观和追求天地和谐的文化理念。这些经典构图比例及其背后的文化内涵,可以从《周髀算经》《营造法式》等古代文献,乃至新石器时期的考古遗址中得到有力的诠释。
1.1 独乐寺观音阁及山门构图比例的主要研究成果
以往学者在独乐寺观音阁与山门之构图比例研究方面取得了诸多富于启发性的成果。
梁思成在《蓟县独乐寺观音阁山门考》(1932)一文中,通过对观音阁与山门的详细测绘,并将实测数据(尤其是大木构架的数据)与宋《营造法式》所规定的“材分°制”进行比较,首次实现了对《营造法式》卷四“大木作制度”中记载的“以材为祖”的重要设计原则的初步解读;此外,该文还分别讨论了观音阁、山门大木结构中许多构件的比例关系,包括:铺作总高与柱高的比例关系(约为1:2)、梁断面之高宽比例(约为2:1,梁思成由此指出辽代木构中梁之受力科学性优于清代木构)、柱高与柱径之比(山门为8.65,观音阁下层为9.1,上层为5.1~5.85)、举折坡度(观音阁约为1:3.66,山门约为1:4)、檐高与出檐之比(山门为10:4.32,观音阁为2:1,二者出檐均远较清代建筑深远)等。
此后,较早开始讨论观音阁与山门平、立面构图比例的学者是陈明达与王贵祥。
首先,王贵祥在《√2与唐宋建筑柱檐关系》(1984)一文中指出许多唐宋辽金单檐木构建筑的檐高与柱高之间存在√2比例关系,其中独乐寺山门的檐高与柱高之比为1.43,接近√2。
图1 陈明达的独乐寺观音阁立面比例分析草图
随后陈明达在《独乐寺观音阁、山门建筑构图分析》(1986)一文中对观音阁与山门的大木构架之构图比例进行了深入探析。陈明达通过将两座建筑的所有重要实测尺寸转换为材、分°值,来探讨其“以材为祖”的设计规律。该文指出:观音阁首层平面通面阔78材,通进深55材,长宽比近于√2:1;观音阁木构架正立面(亦即纵剖面)总轮廓高宽比为6:8(木构架总高、檐宽各为梢间面阔即13材的6倍和8倍),侧立面(亦即横剖面)总轮廓高深比为6:6(总高、山面檐宽均为13材的6倍),整个木构架的立面构图以13材(梢间面阔)为模数;此外,木构架总高与通面阔分别为77.5材、78材,构成近似正方形构图,二层柱头高与中央三间面阔分别为51材、52材,构成另一个近似正方形构图;(图1)山门通面阔67材,通进深36材,长宽比为1.86:1;山门大木构架正立面约为10:4的横长方形轮廓,侧立面为6:4的横长方形轮廓(宽、深、高分别为山面间广之半即9材的10倍、6倍和4倍,立面构图以9材为模数);大木构架总高等于通进深(均为36材)。(图2)陈明达后来将前文扩展为《独乐寺观音阁、山门的大木作制度》一文(1990年定稿,2002年发表),该文进一步指出:观音阁、山门用材的广厚比均为15:10.6,即√2:1(并指出这是符合力学原则的断面比例)。特别值得一提的是,文中还在观音阁纵剖面分析图中绘制了一个为瞻仰观音像而形成的等边三角形构图,可以看作最早探讨观音像与阁之间构图关系的尝试。(图3)
图2 陈明达独乐寺山门立面比例分析草图
图3 陈明达的独乐寺观音阁纵剖面比例分析草图
王贵祥则进一步在《唐宋单檐木构建筑平面与立面比例规律的探讨》(1989)一文中提出“古代中国人对于建筑比例的把握,早已深入到平面、立面、剖面乃至群体关系与庭院尺度的把握之中去了”;“以1为短边,以√2为长边组成的矩形,在平、立面的构图中也运用得比较多”。该文指出独乐寺山门明间面阔(约等于檐高)与檐柱高(约等于山面间广)之比约为√2。(图4)在《唐宋单檐木构建筑比例探析》(1998)一文中,王贵祥又指出:独乐寺山门的台基平面为√2矩形,同时观音阁剖面中也包含√2比例关系,文中还附有一幅表现观音阁总高与檐高√2比例关系的示意性草图。(图5)
图4 王贵祥的独乐寺山门立、剖面构图比例分析
图5 王贵祥的独乐寺观音阁剖面构图比例分析
傅熹年在《中国古代城市规划、建筑群布局及建筑设计方法研究》(2001)中进一步尝试探索观音阁与山门各间面阔、进深的尺数,并提出这两座建筑分别以下层内柱(观音阁)和平柱高(山门)作为立、剖面设计的扩大模数。杨新则在《独乐寺观音阁建筑与维修的思考》(2007)一文中继续“以材为祖”的探索,指出观音阁下层柱高为15材(取单材广27cm),暗层柱高(含普拍枋)为10材,上层柱高为10.5材;在重申木构架正立面为正方形构图的同时,指出大木构架侧立面高宽比为1.4。
蒋雪峰、杨大禹的《中国古建筑传统数字观念分析——以河北蓟县独乐寺观音阁为例》(2011)一文对观音阁正立面构图比例又进行了一些探索,指出“在观音阁总面阔和建筑总高的关系方面,可以明确的看(原文如此——笔者注)中国原始的宇宙观和传统数字观念。在宇宙观方面可以看出天圆地方的象征意象……同时在比例上形成了一层和二层的1:1关系”。可惜该文对观音阁正立面的构图分析仅限于简单的几何作图,未进行实测数据验证——由下文“观音阁及观音像构图比例分析”一节可知,实际上观音阁正立面总高与二层平坐总面阔(而非该文所称“观音阁总面阔”)形成正方形构图,而“天圆地方”之象征意义则是通过总高(等于平坐总面阔)、观音像高、中庭总面阔等重要尺寸之间的一系列√2比例关系来表示的,而并不能从正立面总面阔与总高的关系中直接看出来。当然该文在观音阁正立面整体构图中寻找比例关系的尝试还是有一定启发意义的。
1.2 方圆作图比例
图6 方圆作图基本构图比例——√2与√3:2
在以上研究的基础上,特别是通过对观音阁与山门的实测图进行几何作图与实测数据分析,笔者得以进一步发现:观音阁与山门均在平、立、剖面(甚至包括塑像)设计中综合运用了基于方圆作图的一系列比例关系,尤其是√2和√3/2构图比例。(图6)
图7 王贵祥的唐宋建筑檐高与柱高比例分析图
图8 张十庆的《营造法式》足材与单材比例分析图
其中,√2比例实际上是正方形和圆形之间最基本的比例关系之一,也是运用方圆作图可以轻易实现的一种构图比例——正方形的边长与其外接圆直径(即该正方形对角线长)之比即为1:√2。√2比例是中国古代建筑中运用最广泛的构图比例之一。(图7、图8)
√3/2比例是另一种可以由简单方圆作图获得的构图比例。如果以一个正方形底边两个顶点为圆心,分别以正方形边长为半径作圆弧,两条圆弧在正方形内的交点将与底边两个顶点形成一个等边三角形;而包含这个等边三角形的矩形,短边与长边之比(相当于等边三角形的高与边长之比)等于√3/2,下文称此种内含等边三角形的矩形为“√3/2矩形”。√3/2比例是中国古代建筑中又一重要的构图比例。
图9 方圆作图基本原型√2矩形与√3:2矩形的近似作图
今天只要具备中学数学知识的人即知,√2与√3/2皆为无理数(即无限不循环小数)。但中国古人并不一定认识“无理数”这一概念,所以在运用这些方圆作图产生的比例时,常常是以整数比近似值取代之——最典型者,即√2可以用“方五斜七”或者“方七斜十”这类广为流传的口诀来表示,意思是正方形边长为5,则对角线长为7;边长为7,则对角线长为10。有趣的是,7:5=1.4,10:7≈1.4286,二者的平均值为1.4143,与√2(≈1.4142)极为接近——因此,古人实际上是以最靠近√2上下的两组简单整数比来取而代之。与此类似,√3/2也可以用以下近似的整数比代替,如6:7、7:8等。其中,6:7≈0.857,7:8=0.875,二者的平均值为0.866,同样十分接近√3/2(≈0.866)。(图9)
需要特别说明的是:本文对独乐寺观音阁、山门,以及中国古代其他典型佛教建筑与其内部塑像构图比例的研究,尽可能都采取对实测图进行几何作图与实测数据分析相结合的方法;文中对实测数据的分析计算结果,全都标明了与理论值(如√2、√3/2等)的吻合度(百分比),并且本文所收录的实例,实测数据分析结果与理论值的吻合度绝大部分均高于98%,且大部分超过99%——将实测数据分析与几何作图结果互相参照,对于分析所得结论能有既理性又直观的把握。
下面将分别讨论独乐寺观音阁及观音像、山门及金刚像,以及唐、辽、清代几座其他相关实例的构图比例。
2 观音阁及观音像构图比例分析
独乐寺观音阁面阔五间,进深四间(八架椽),上层覆单檐歇山顶,平坐以下设腰檐一周,阁外观二层,实际平坐背后设一暗层,内部实为三层。中央立高约16米的十一面观音巨像,整座楼阁的空间布局其实是为观音像量身设计,分别在暗层和顶层设矩形、六边形的中庭,上下贯通,以容纳此像。底层平面若《营造法式》所谓“金厢斗底槽”,信众可由外槽回廊一周仰视立像;暗层中专门设内廊一周,观者可在观音腰部高度绕行;至顶层信众终于可以近距离目睹观音面相,遂达宗教气氛之高潮。
通过对陈明达《蓟县独乐寺》(2007)一书中的实测图(天津大学建筑系20世纪90年代测绘)进行几何作图,结合实测数据分析,可得如下结论。
(1)正立面
总高(22.141米):平坐总面阔(22.57米)=0.981≈1(吻合度98.1%);总高的二分之一约位于二层平坐楼面。
图10 蓟县独乐寺观音阁正立面分析图
总高(22.141米):上层檐口高(15.387米)=1.439≈√2(吻合度98.3%)。
首层平柱高(4.025米):明间面阔(柱头尺寸4.645米)=0.867≈√3/2(吻合度99.9%)——即首层明间为√3/2矩形构图。(图10)
(2)纵剖面与观音像
观音阁总高(22.141米):观音像总高(含基座,15.93米)=1.39≈7:5(吻合度99.3%);1.39≈√2(吻合度98.3%)——观音阁总高与观音像总高(含基座)之比约为7:5,即像高与阁高呈“方五斜七”之比例关系。
平坐总面阔(22.57米):观音像总高(含基座,15.93米)=1.417≈√2(吻合度99.8%)。
观音像总高(含基座,15.93米):中庭总面阔(取中庭两侧栏杆外沿间距,11.375米)=1.4=7:5≈√2(吻合度99%)。
平坐总面阔(22.57米):中庭总面阔(11.375米)=1.984≈2(吻合度99.2%);观音阁总高(22.141米):中庭总面阔(11.375米)=1.946≈2(吻合度97.3%)。
图11 蓟县独乐寺观音阁纵剖面分析图一
图12 蓟县独乐寺观音阁纵剖面分析图二
综上可知,中庭总面阔:观音像总高:观音阁总高(或平坐总面阔)≈1:√2:2——这是构成观音阁与观音像之间空间关系的最重要的构图比例。(图11、图12)
此外,观音像总高(含基座,15.93米):首层平柱高(4.025米)=3.958≈4(吻合度98.9%),可知首层平柱高不仅是观音阁正立面设计的重要模数(如陈明达已经指出的),可能同时也是观音像高的一个模数。
(3)纵剖面木构架与斗八藻井
木构架总高(19.49米):首层通面阔(柱头尺寸19.92米)=0.978≈1(吻合度97.8%);二层柱头至首层地面距离(12.975米):首层内槽通面阔(柱头尺寸13.295米)=0.976≈1(吻合度97.6%)——如前文所言,以上两个近似正方形构图陈明达已经指出。
首层通面阔(柱头尺寸19.92米):首层内槽通面阔(柱头尺寸13.295米)=1.498≈3:2(吻合度99.9%)。
室内地面至斗八藻井顶部距离:首层通面阔=6:7≈√3/2。
图13 蓟县独乐寺观音阁纵剖面分析图三
如果以首层东、西山墙立柱轴线底部为圆心,以木构架总高(约等于首层通面阔)为半径分别作圆弧,则圆弧交汇点略高于观音头像上方的斗八藻井顶部。(图13)
(4)横剖面
图14 蓟县独乐寺观音阁横剖面分析图
木构架总高(19.49米):首层通进深(柱头尺寸14.04米)=1.39≈7:5(吻合度99.3%);1.39≈√2(吻合度98.3%)。(图14)
(5)平面
首层通面阔(柱头尺寸19.92米):首层通进深(柱头尺寸14.04米)=1.419≈√2(吻合度99.6%)。
图15 蓟县独乐寺观音阁首层平面(仰视)分析图
首层明间面阔(柱头尺寸4.645米):梢间面阔(柱头尺寸3.313米)=1.402≈7:5(吻合度99.9%);1.402≈√2(吻合度99.2%)——即首层梢间面阔与明间面阔呈“方五斜七”比例关系。(图15)
(6)上下檐斗栱材分゜
单材广(27cm):材厚(18cm)=3:2;足材广(38.5cm):单材广(27cm)=1.426≈√2(吻合度99.2%)。
将这一结果与北宋《营造法式》的规定相比较:“法式”规定单材广15分゜,材厚10分゜,二者之比为3:2;足材广21分゜,与单材广(15分゜)之比为7:5,约为√2(张十庆已经指出)——故观音阁斗栱的材广、材厚之比值与“法式”规定相等,足材广与单材广之比值与“法式”规定接近(均近似于√2)。
(7)小结
图16 蓟县独乐寺观音阁设计理念分析图
综上所述,观音阁设计之关键,首先在于对纵剖面的整体控制:即令中庭总面阔:观音像总高(含基座):观音阁总高(或平坐总面阔)=1:√2:2——如果以观音像心口为圆心作三环同心圆(直径之比为1:√2:2),则第一环直径等于中庭总面阔,也等于观音像总高的1/√2;第二环直径等于观音像总高(约等于观音阁上层檐口至地面距离,同时约等于观音阁歇山顶二博风版间距);第三环直径等于观音阁总高(约等于二层平坐总面阔)。这三个同心圆的直径分别控制了内部中庭、观音像高、楼阁上层檐高、平坐总面阔和楼阁总高等观音阁设计中极其关键的尺寸,构图比例精彩而简洁,近乎完美。(图16)
其次,诚如陈明达所指出的:木构架总高约等于首层通面阔,二者与首层通进深之比皆约为√2,即令木构架的首层平面、横剖面均为√2矩形,纵剖面为正方形;二层柱头高与内槽通面阔形成另一个近似正方形构图,这一小正方形边长与木构架整体形成的大正方边长呈2:3比例关系。
再次,观音阁之足材广与单材广之比约为√2——足见√2比例贯穿于观音阁建筑的整体与局部(平、立、剖面及斗栱材分°值)、建筑与塑像,可谓“吾道一以贯之”。
最后,观音阁首层通面阔与斗八藻井的高度构成一个√3/2矩形,而首层明间面阔与平柱高同样构成一个√3/2矩形,二者一大一小,形成了另一组和谐的构图——可以看作是观音阁一系列√2比例这一“主旋律”之外的“伴奏”。
陈明达曾经敏锐地指出:“从观音阁的断面图上看到所用尺度及所形成的空间布局,也非常恰当而紧凑,可以说无懈可击。”上述精彩绝伦的比例关系,恰恰印证了陈明达的观点——这些比例关系也充分证明了这座所谓的“观音之阁”(二层匾额之题名)的确是为观音像“度身定制”的建筑杰作。
独乐寺观音阁作为中国古代木结构楼阁的重要代表,通过对√2和√3/2方圆作图比例的巧妙驾驭,将建筑空间与塑像完美融合,营造出震撼人心的艺术效果,堪称现存中国古建筑中一件登峰造极的“神品”。
3 山门及金刚像构图比例分析
独乐寺山门面阔三间,进深二间(四架椽),单檐庑殿顶。进深方向为版门、隔墙一分为二,形成门内、门外,明间内外皆为门道,门外东、西次间各设金刚像一尊,威武雄强。山门不仅建筑为辽代木构,且两尊金刚像亦为辽代塑像,为同时期寺庙山门中之罕贵孤例。
通过对丁垚《蓟县独乐寺山门》(2016)一书中的实测图进行几何作图以及实测数据分析,可得如下结论。
(1)正立面/纵剖面
总高(10.31米):台基总面阔(平均值19.119米)=0.539≈1:(2√2-1)(吻合度98.5%)。
明间面阔(柱头尺寸平均值6.074米):平柱高(中央六柱平均值4.329米)=1.403≈7:5(吻合度99.8%);1.403≈√2(吻合度99.2%)——正如王贵祥指出的,独乐寺山门明间为√2矩形构图。
图17 独乐寺山门正立面分析图
图18 独乐寺山门纵剖面分析图
总高(10.31米):明间面阔(柱头尺寸平均值6.074米)=1.697≈1+1/√2(吻合度99.4%)。(图17、图18)
(2)平面
通进深(柱头尺寸平均值8.668米):明间面阔(柱头尺寸平均值6.074米)=1.427≈√2(吻合度99.1%)——可知独乐寺山门明间门道为√2矩形,又被大门分为两个小√2矩形(此为√2矩形之特性,二等分之后变为两个旋转90°的小√2矩形)。
通进深(柱头尺寸平均值8.668米):次间面阔(柱头尺寸平均值5.096米)=1.701≈1+1/√2(吻合度99.6%)——通进深与次间面阔之比例和总高与明间面阔之比例相同。
图19 独乐寺山门平面分析图
台基面阔(平均值19.119米):进深(平均值13.241米)=1.444≈√2(吻合度97.9%)。(图19)
(3)横剖面
通进深(柱头尺寸平均值8.668米):木构架总高(平均值8.478米)=1.022≈1(吻合度97.8%)。
平柱高(中央六柱平均值4.329米):山面间广(柱头尺寸平均值4.334米)=0.999≈1(吻合度99.9%)。
以上两点结论陈明达、王贵祥均已指出。
(4)纵剖面与金刚像
图20 独乐寺山门纵剖面及塑像分析图
金刚像高(二像之平均值5.035米):总高(台基以上,9.91米)=0.508≈1:2(吻合度98.4%)。
平柱高(中央六柱平均值4.329米):金刚像高(平均值5.035米)=0.86≈√3/2(吻合度99.3%)。(图20)
(5)斗栱材分゜
单材广(239mm):材厚(169mm)=1.414=√2;
足材广(363mm):单材广(239mm)=1.519≈3:2(吻合度98.7%)——山门斗栱单材之广厚比,以及足材广与单材广之比,正好与《营造法式》规定相反。
(6)小结
综上可知,独乐寺山门是在平、立、剖面及斗栱材分°设计中综合运用√2、(2√2-1):1、(1+1/√2):1等构图比例的杰作,同时令建筑总高(台基以上部分)为金刚像高之2倍,令平柱高与像高呈√3/2(接近6:7)比例,使像与门之间获得了良好的比例关系。
4 独乐寺山门与观音阁总平面构图比例分析
独乐寺中现仅有山门、观音阁为辽代重建时原构,故辽代甚至更早时期的寺院总平面布局无从知晓。但山门与观音阁的台基尺寸及二者之间的距离同样含有方圆作图比例关系,从而在一定程度上反映了早期独乐寺总平面布局的规划设计手法。
通过对杨新编著的《蓟县独乐寺》(2007)一书中的实测图进行几何作图,结合实测数据分析,可得如下结论。
(1)山门后檐柱中线至观音阁前檐柱中线距离(27.4米):观音阁台基总面阔(平均值26.75米)=1.024≈1(吻合度97.6%)——故山门、观音阁间距与观音阁台基总面阔构成一个近似正方形构图。
(2)观音阁台基面阔(平均值26.75米):山门台基面阔(平均值19.119米)=1.399≈7:5(吻合度99.9%);1.399≈√2(吻合度98.9%)——可知山门台基面阔与观音阁台基面阔之间符合“方五斜七”比例关系。
图21 独乐寺山门与观音阁形成的总平面构图分析之一
(3)观音阁台基面阔(平均值26.75米):山门台基进深(平均值13.241米)=2.02≈2(吻合度99%)。(图21)
图22 独乐寺山门与观音阁形成的总平面构图分析之二
(4)东西配殿前檐柱间距:观音阁前檐柱至山门后檐柱距离=√2——即独乐寺主庭院为一√2矩形。(图22)
(5)小结
综上可知,山门、观音阁在总平面规划设计中的确定方法十分简洁:首先令山门的台基为一√2矩形,面阔为进深的√2倍;其次,令观音阁台基面阔为山门台基面阔的√2倍(亦即山门台基进深的2倍);最后令山门后檐柱至观音阁前檐柱距离等于观音阁台基面阔即可。
故而山门台基进深:山门台基面阔:观音阁台基面阔(约等于山门后檐柱至观音阁前檐柱距离)=1:√2:2。如果以山门后檐柱中线与观音阁前檐柱中线的中点连成一南北中轴线,则该轴线的中点基本上是东、西配殿形成的东西轴线与观音阁、山门形成的南北轴线之交点,亦即院落的中心点;若以此中心点为圆心,以山门台基进深、山门台基面阔、观音阁台基面阔(约等于山门后檐柱至观音阁前檐柱距离)为直径作三个同心圆,则所形成之构图与前文观音阁、观音像之构图(图12)如出一辙——足见独乐寺观音阁、山门之群体总平面构图与观音阁单体立、剖面构图的设计手法可谓一以贯之,均采用了1:√2:2的构图比例,十分耐人寻味。
通过以上对观音阁及观音像、山门及金刚像,以及山门与观音阁总平面构图比例的分析,我们发现√2比例在独乐寺中得到了极为广泛的运用,至少包括以下方面:(1)观音阁台基面阔与山门台基面阔之比;(2)观音阁总高与观音像总高之比(前者接近平坐面阔,后者接近上层檐口高);(3)观音像总高与中庭面阔之比;(4)观音阁首层平面通面阔与通进深之比(阁之二层平面也接近此比例);(5)观音阁木构架总高与通进深之比;(6)观音阁首层明间面阔与梢间面阔之比;(7)观音阁首层平柱高与上层平柱高之比;(8)观音阁斗栱足材广与单材广之比;(9)山门台基面阔与进深之比;(10)山门平面通进深与明间面阔之比;(11)山门明间面阔与平柱高之比;(12)山门檐高与平柱高之比;(13)山门斗栱材广与材厚之比;(14)独乐寺主庭院面阔与进深之比(取观音阁、东西配殿前檐柱及山门后檐柱所围合的矩形)。
此外,山门中还运用了√2比例之“变体”如2√2-1、1+1/√2等。独乐寺观音阁与山门这两座辽代杰作真可谓运用√2比例之集大成者,或者一曲以√2比例为母题的交响乐——由于这一方圆作图比例在整体与局部构图之中无所不在,故而使得两座建筑及其塑像之间到处弥漫着高度和谐的美感。
5 其他四座佛教建筑与内部塑像构图比例分析
关于独乐寺观音阁与山门的设计构图,除了方圆作图比例的运用之外,塑像与建筑之间的构图比例问题,还值得进一步做些引申。
较早提出塑像在佛教建筑中重要性的学者是梁思成。他在《我们所知道的唐代佛寺与宫殿》(1932)一文中曾指出:“我们平时一开口就说‘供佛’,供是供奉,是伺候,我们的佛是‘住’在佛殿里,要人‘供’的。佛殿并不是预备多数人听讲之用,而是给佛住的,所以佛殿是佛的住宅……”;在《蓟县独乐寺观音阁山门考》(1932)中他又称“十一面观音像,实为本阁——或本寺——之主人翁”。其后,莫宗江、陈明达也颇为注意此方面问题。莫宗江曾在《〈应县木塔〉读后札记》一文中指出“目前的分析仍是工程技术和艺术造型处理方面的手法分析;在这些之前的‘宗教功能的要求’尚须深入研究”。陈明达在《独乐寺观音阁、山门建筑构图分析》(1986)中则强调指出“室内塑像构图与建筑构图的关系也很重要”,并对此进行了最早的探索。
本文是将中国古代佛教建筑中的塑像与建筑空间结合起来研究的一次初步尝试,也是对前辈学者们提出的研究方向的继续深入。上文已对独乐寺的观音像与观音阁、金刚像与山门之构图比例进行了分析,并发现其中的√2、√3/2、2:1等一系列比例关系。实际上,将塑像与建筑空间统一进行设计,使二者之间符合一定清晰而和谐的比例关系,在中国古代佛教建筑中尚能找到不少实例。下文将对五台山佛光寺东大殿、义县奉国寺大殿、应县佛宫寺释迦塔(参见:天地圆方 塔像合一——应县木塔室内空间与塑像群构图比例探析)、承德普宁寺大乘阁及其塑像进行分析——尤其将重点讨论建筑与塑像之间的构图比例。
5.1 五台山佛光寺东大殿(唐大中十一年,857年)
佛光寺东大殿面阔七间,进深四间,单檐庑殿顶。平面设内、外柱两周,将殿身分作内、外槽,接近《营造法式》中所谓“金箱斗底槽”格局,主要塑像三十五尊位于面阔五间、进深二间的内槽之中,外槽则犹如一圈回廊。通过对《佛光寺东大殿建筑勘察研究报告》(2011)一书中的东大殿建筑实测图以及天津大学建筑学院的东大殿唐代塑像三维扫描点云图片进行几何作图,结合实测数据分析,可得如下结论。
(1)正立面
如果以1.008米为单位绘制正立面模数网格,则中央五间面阔均为5格,台基总面阔40格,立面总高14格。由此可得:
总高:台基总面阔=14:40≈1:2√2(以“方七斜十”取代1:√2);
明间面阔(即中央五间面阔):总高=5:14≈1:2√2(以“方五斜七”取代1:√2);
明间面阔(即中央五间面阔):台基总面阔=1:8。
图23 五台山佛光寺东大殿正立面分析图
以实测数据校核:台基总面阔(平均值40.42米):明间面阔(5.04米)=8.02≈8(吻合度99.8%)。(图23)
(2)纵剖面、内槽平面与塑像
明间中央主佛净高(取须弥座上皮至头顶):明间面阔=1:√2;中央主佛净高:中央主佛总宽(取两膝处宽度)=√2;中央主佛头部以下高=中央主佛总宽——由此可知,中央主佛高宽比为√2,主佛净高为明间面阔的1/√2亦即大殿总高的1/4,主佛总宽为明间面阔的1/2,这是佛光寺东大殿佛像与建筑空间的重要比例关系,并很可能是东大殿设计的基本出发点之一。
中央三佛总高(包含背光):明间面阔=3:2;三佛总高(包含背光):中央主佛高(含须弥座)=√2;各胁侍菩萨高约为三佛总高(包含背光)的1/2;各供养菩萨高约为各胁侍菩萨高的1/2;三佛背光顶部(三者略有微差,北侧佛像背光最高,中央主佛背光最低)接近内槽平闇(仅比平闇小方格下皮低10cm左右)——由此可知,三佛总高(包含背光)为塑像群陈设的重要控制尺寸,它分别是中央主佛高(包含须弥座)的√2倍、协侍菩萨高的2倍、供养菩萨高的4倍、明间面阔的1.5倍,并且决定了内槽平闇的位置。
图24 五台山佛光寺东大殿塑像构图分析
图25 五台山佛光寺东大殿设计理念分析图
内槽全部塑像分作5组,每组都基本上分布在边长5.04m(即明间面阔)的正方形区域内。(图24、图25)
(3)小结
由上述分析可知:佛光寺东大殿内槽的塑像群不仅自身有着清晰的比例关系,并且明显是与大殿的建筑尤其是内槽空间统一设计的。中央主佛净高为明间面阔的1/√2,同时等于大殿总高的1/4,这极可能是佛殿设计的重要出发点——我们可以推测,中央主佛净高是佛光寺东大殿设计的一个重要量度(一如独乐寺观音像高之于观音阁)。
佛光寺东大殿的建筑设计与塑像陈设,通过方圆作图比例的巧妙运用,最终使整座佛殿的塑像(佛殿的主角)与建筑空间(佛像的居所)形成彼此交融、不可分割的整体,体现了唐代佛殿建筑设计的卓越水平——可知最迟在唐代,中国古代佛殿与内部塑像统一设计的手法已经十分成熟了。
5.2 义县奉国寺大殿(辽开泰九年,1020年)
义县奉国寺大殿为国内现存最大的辽代木构,面阔九间,进深五间,单檐庑殿顶,台基高大,整体气势恢宏。殿内中央七间前两进为礼佛空间,后两进内一字排开七尊大佛,一间一佛,为国内佛殿之孤例。此外,殿内东、西、北面各有一间回廊可供信众环绕。通过对《义县奉国寺》(2005)一书中的实测图进行几何作图以及实测数据分析,可得如下结论。
(1)正立面/纵剖面
总高(21.035米):通面阔(48.055米)=0.438≈7/16(吻合度99.9%);0.438≈√3/4(吻合度99%)。
总高(台基以上,17.665米):明间面阔(柱脚值5.845米)=3.02≈3(吻合度99.3%)。
图26 义县奉国寺大殿正立面分析图
图27 义县奉国寺大殿纵剖面分析图
若以3.005米为正立面模数网格:则总高7格,通面阔约16格,正脊总长(含鸱吻)8格(为通面阔之半),月台高1格,阑额下皮高3格,檐口(取瓦当上皮)高约4格。(图26、图27)
(2)纵剖面与佛像
图28 义县奉国寺大殿塑像分析图二
中央主佛总高(从佛坛顶面至头顶8.75米):总高(台基以上,17.665米)=0.495≈1:2(吻合度99%)。
中央主佛总高(8.75米):明间面阔(5.845米)=1.497≈3:2(吻合度99.8%)。
后金柱高:明间面阔=√2。(图28)
(3)小结
综上所述,奉国寺大殿与一百六十余年前的佛光寺东大殿一样,完美地将建筑空间与佛像(尤其是中央主佛)统一设计,并综合运用了√3/2、√2、3:2、2:1等构图比例。其中,中央主佛总高与大殿总高(台基以上)之比为1:2,同时与大殿明间面阔之比为3:2,应是大殿与塑像设计之重要考量因素。
5.3 承德普宁寺大乘阁(清乾隆二十年,1755年)
普宁寺大乘阁通高39.16米(月台下地面至宝顶),为中国现存第二高木构建筑,仅次于山西应县木塔。首层主体部分面阔七间,进深五间,南面出抱厦五间,东西各出抱厦三间。阁外观五层六檐(实为三层),主体大攒尖顶四隅设四座小攒尖顶,以象征须弥山。内部核心中庭空间面阔五间,进深三间,立千手观音像一尊,通高24.14米(由室内地面至双手仰托日月顶部),是世界最大的木制佛像。与独乐寺观音阁相似,大乘阁亦是为千手观音立像度身而建。
通过对孙大章《承德普宁寺——清代佛教建筑之杰作》(2008)一书中的实测图进行几何作图以及实测数据分析,可得如下结论。
(1)正立面
图29 承德普宁寺大乘阁正立面分析图
总高(39.16米):通面阔(含抱厦,27.7米)=1.414≈√2(吻合度接近100%)。
总高:顶层下檐口高(取瓦当上皮)=√2。(图29)
(2)平面
图30 承德普宁寺大乘阁平立面分析图
通面阔(含抱厦,27.7米):通进深(含抱厦19.94米)=1.389≈7:5(吻合度99.2%);1.389≈√2(吻合度98.2%)。(图30)
(3)纵剖面与千手观音像
观音像总高(24.14米):中庭总面阔(17.06米)=1.415≈√2(吻合度99.9%)——与独乐寺观音阁十一面观音像与中庭之构图比例一脉相承。
总高(台基以上,36.75米):观音像总高(24.14米)=1.522≈3:2(吻合度98.6%)。
由此可知:大乘阁建筑空间与千手观音像比例关系之确定,应是令像高与中庭总面阔(即中央五间面阔)之比为√2,阁之总高(台基以上)与像高之比为3:2。这组比例关系让我们想到前文所述独乐寺山门斗栱的材广与材厚、足材广与单材广的两组比值(中庭总面阔、像高及阁高就如同材厚、材广和足材广之关系),当然也与观音阁斗栱或者《营造法式》之规定大同小异,十分值得玩味。
纵剖面上另一个重要的控制高度是中庭总高,即平棊天花至室内地面距离24.54米,比观音像总高24.14米仅高40cm,显然是根据观音像总高确定的——中庭总高与阁总高(台基以上)、中庭总面阔也有十分类似的比例关系:
总高(台基以上,36.75米):中庭总高(平棊天花至室内地面,24.54米)=1.498≈3:2(吻合度99.8%);中庭总高(平棊天花至室内地面,24.54米):中庭总面阔(17.06米)=1.438≈√2(吻合度98.3%)。
图31 承德普宁寺大乘阁纵剖面及塑像分析图
比较上述两组数据分析结果可以发现:阁总高(台基以上)与中庭总高的3:2比例关系吻合度更高(达到99.8%),而观音像总高与中庭总面阔的√2比例关系吻合度更高(达到99.9%);而四个数据分析结果的吻合度都超过98%——就具体设计而言,不论采取像高还是平棊天花高来确定千手观音像与大乘阁的比例关系都是合理可行的。(图31)
(4)横剖面
总高(39.16米):首层通进深(含抱厦19.94米)=1.964≈2(吻合度98.2%)。
图32 承德普宁寺大乘阁横剖面分析图
中庭总进深(10.6米):中庭总高(24.54米)=0.432≈√3/4(吻合度99.8%)——可知大乘阁中庭空间的纵剖面为一√2矩形,横剖面为两个√3/2矩形的叠加(沿长边方向),中庭设计综合运用了√2与√3/2两种方圆作图比例。(图32)
(5)大乘阁总高与观音像总高
大乘阁总高(39.16米):观音像总高(24.14米)=1.622≈1.618(即西方所谓“黄金比”,吻合度99.8%)——不同于独乐寺观音阁的是,大乘阁总高与观音像高之比不再取√2,因为大乘阁屋顶形式为重檐攒尖,高于观音阁之歇山顶,但其总高与像高之比例恰好是西方的“黄金比”(1.618:1),究竟是巧合还是刻意为之,值得深入探究。
(6)小结
综上可知:普宁寺大乘阁与七百七十余年前的独乐寺观音阁一样,是为千手观音立像度身定制的楼阁建筑,通过一系列√2、√3/2、3:2构图比例的运用,将建筑空间与塑像完美结合。尤其是阁正立面高宽比、首层平面宽深比皆为√2,观音像总高(或中庭总高)与中庭总面阔之比亦为√2——故而塑像与中庭形成的室内主体空间与阁之外轮廓呈相似形,使得建筑与塑像获得了内在和谐。
5.4 小结:度像构屋
以上四个实例,加上独乐寺观音阁与山门,共计六例——这六座中国古代佛教建筑,都存在塑像与建筑之间简洁的比例关系,尤其反映在建筑总高(或台基以上高)与主要塑像高之间的比例关系,包括以下几类:
(1)建筑总高:塑像高=√2,如独乐寺观音阁;
(2)建筑总高(台基以上):塑像高=2,如独乐寺山门、义县奉国寺大殿;
(3)建筑总高(台基以上):塑像高=3:2,如承德普宁寺大乘阁;
(4)建筑总高:塑像高=4,如五台山佛光寺东大殿;
此外,塑像常与其占据室内空间之面阔存在一定比例关系,包括以下几类:
(1)塑像高:中庭通面阔=√2:1,如独乐寺观音阁、普宁寺大乘阁;
(2)塑像高:明间面阔(或内槽通面阔)=1:√2,如佛光寺东大殿;
(3)塑像高:明间面阔=3:2,如奉国寺大殿。
(4)塑像高:山面间广(约等于平柱高)=7:6(或2:√3),如独乐寺山门。
将室内塑像与建筑空间统一设计,很可能是中国古代佛教建筑(包括殿、阁、塔、门等)的重要设计手法。通过令塑像与建筑空间符合一定清晰、和谐的比例关系,使得二者完美交融,从而共同营造出庄严崇高的宗教气氛,让前来“礼佛”的广大信众受到深深的震撼——这正是佛教建筑与塑像设计中首要的“宗教功能的要求”(如前文所言,莫宗江曾敏锐地指出此点对于佛教建筑研究之重要性)。
本文所列举的六座中国古代经典佛教建筑,其建筑空间均如同为塑像度身设计,成为塑像“合身”的居所——诚可谓“度像构屋”的设计理念。
上述设计理念与手法,在中国建筑史与雕塑史中均是极其值得注意的新课题,尚待深入研究。尤其在基础的测绘工作中,应该将建筑与塑像的测量统一考虑(三维激光扫描仪尤其适合对塑像与室内空间进行整体测量)。
6 结语:“大匠造制而规矩设焉”
图33 北宋《营造法式》第一图:“圆方方圆图”
图34 《周髀算经》中的“圆方图”与“方圆图”
以独乐寺观音阁、山门及上述四个经典实例为代表,在建筑设计与塑像陈设中统一运用方圆作图比例的构图手法,实际上有着历史悠久而积淀深厚的文化内涵。
中国现存最重要的古代建筑专著——北宋的《营造法式》一书中,出现在图版中的第一幅“图样”即是“圆方方圆图”,分别为一幅“圆方图”(绘一圆与其内接正方形)与一幅“方圆图”(绘一正方形与其内切圆)。(图33)该图不仅是全书第一幅插图,也是“总例”中的唯一插图——这幅图的重要性远非一般,作者李诫的这一编排实际上含义深远。结合《营造法式》的文字可知,此图实为李诫所引《周髀算经》之插图(图34),与此图密切配合的文字,是《营造法式》正文开篇即“营造法式看详”第一条目“方圆平直”下所引《周髀算经》中的两段话:
“数之法出于圆方。圆出于方,方出于矩,矩出于九九八十一。”“万物周事而圆方用焉,大匠造制而规矩设焉。”
以往研究《营造法式》的学者们常常表示遗憾,该书虽然详细阐明了木结构建筑(特别是大木作制度)“以材为祖”的要义,对于理解中国古代建筑的“材分°”模数制意义重大,然而除此之外,对建筑单体设计中十分重要的总轮廓及开间、进深、柱高等重要尺寸及比例关系(即书中所谓“屋宇之高深”)却鲜有提及。其实,李诫对这些建筑设计中的重要内容虽未明言,却所幸还是在“总例”的字里行间和这幅重要的“圆方方圆图”中,为我们研究中国古代建筑的基本构图比例留下了一条极其重要的线索。
其实,《营造法式》所引《周髀算经》“圆方图”和“方圆图”中所包含的方圆作图手法,正是中国古代都城规划、建筑群布局与建筑设计中重要而根本的设计方法,而其背后所蕴含的则是中国古人“天圆地方”的宇宙观与追求天地和谐的文化理念。《周髀算经》的另一段话正好诠释了“圆方图”和“方圆图”所代表的文化内涵及基于此的方圆作图法:
“方属地,圆属天,天圆地方。方数为典,以方出圆。”
《周髀算经》中所谓“万物周事而圆方用焉,大匠造制而规矩设焉”,则为基于“圆方图”“方圆图”这两幅最基本的方圆作图而衍生的一系列重要构图比例——这一中国历代匠师(大匠之传人)所遵循与恪守的“规矩”之道——写下了注脚。
图35 辽宁牛河梁红山文化圜丘与方丘总平面图
图36 冯时指出辽宁牛河梁红山文化圜丘三环石坛直径之比为1:√2:2
其实,古人对于方圆作图比例之谙熟与运用,远比《周髀算经》成书之时要早得多。据冯时研究指出:五千年前新石器时期的辽宁牛河梁红山文化“圜丘”的三环石坛,直径分别为11米、15.6米、22米,构成十分精确的1:√2:2的比例关系,即每一环石坛与其内环石坛直径之比值皆为√2。而这一构图比例恰恰可以通过反复运用“方圆图”和“圆方图”所示的方圆作图手法来获得,并且具有了“天圆地方”的象征意义——这样的构图比例和象征意义都与圜丘作为祭天的场所密切相关。(图35、图36)
本文中的观音阁纵剖面以及观音阁与山门形成的总平面,也呈现出与牛河梁红山文化圜丘极其相似的环环相套的方圆构图,由此可知观音阁与观音像精湛的设计构图,或者观音阁与山门之间的整体构图,实际上与距今五千年前的牛河梁红山文化圜丘之构图手法一脉相承,充分反映了中华先民源远流长的“天圆地方”的宇宙观念与象征手法。(图12、图21)
陈明达曾在《独乐寺观音阁、山门建筑构图分析》(1986)一文中称,该文是“将最近研究独乐寺简略建筑构图的一点收获作汇报,以说明对独乐寺的研究,尚未完结,还须继续努力,还大有可为”。同样,本文亦是将笔者近年来对独乐寺观音阁与山门(以及另外四座同类建筑)构图比例的一点发现(当然是建立在前人研究的基础之上)做一汇报——对于独乐寺观音阁、山门这样的杰作而言,仍然只是阶段性的探索而已。衷心期待得到广大读者的批评指正,同时也希望为独乐寺这一中国古建筑中的“无上国宝”的深入研究贡献一份绵薄之力。
公众号图文有删节,完整阅读请参见《建筑史》2018年总第41辑。版权所有,转载请注明出处。本文标准引文格式如下,欢迎参考引用:
王南. 规矩方圆,度像构屋——蓟县独乐寺观音阁、山门及塑像之构图比例探析[M]//贾珺. 建筑史:第41辑. 北京:中国建筑工业出版社,2018:103-125.
相关阅读
2022年全年征订
点击图片 直达订阅
也可以在这里找到我们
新浪微博/Bilibili/澎湃新闻/今日头条:建筑史学刊
微信:jzsxkbjb