【数智文明·研究精粹】信息流行病综述:虚假信息的易感性、传播和免疫
The following article is from 集智俱乐部 Author Linden
导语
虚假信息的传播已对公共卫生和全球流行病的成功管控构成相当大的威胁。研究发现,接触虚假信息可能会减少疫苗接种和遵守公共卫生准则的意愿。3月10日发表于 Nature Medicine 的综述论文根据以往研究总结了信息流行病(Infodemic)的三个关键方向:易感性、传播和免疫。研究发现,虽然人们会因为对信息准确性的疏忽而被虚假信息欺骗,但社会政治信仰和身份结构也会影响是否容易相信虚假信息。文章进一步探讨了虚假信息在社交网络中的传播,以及提高心理免疫力以对抗虚假信息的的措施。作者 Sander van der Linden 是英国剑桥大学心理学教授,研究领域为社会与公众心理学。本文是对论文的全文翻译。
研究领域:信息流行病、网络传播模型、虚假信息、新冠谣言、心理预防
Sander van der Linden | 作者
论文题目:
Misinformation: susceptibility, spread, and interventions to immunize the public
论文链接:
https://www.nature.com/articles/s41591-022-01713-6
目录
摘要
虚假信息研究介绍
一、易感性
二、传播
三、免疫
总结
摘要
摘要
虚假信息研究介绍
虚假信息研究介绍
Box1 未来研究议程和建议
研究问题1:哪些因素导致人们容易受到虚假信息误导?
更好地将准确性驱动与社会、政治和文化动机结合起来,解释人们对错误信息的易感性。
定义、开发和验证用于评估一般和特定领域对虚假信息的易感性的标准化工具。
研究问题2:虚假信息如何在社交网络中传播?
更清晰地勾勒出“暴露”在什么程度上导致“感染”的条件,包括反复暴露的影响、社交媒体上假新闻的局部受众定位、与超级传播者的接触、回音室的作用,以及社交网络本身的结构。
通过(1)捕捉更多不同类型的虚假信息,以及(2)将不同类型的传统和社交媒体平台上的假新闻风险联系起来,提供更准确的人口水平的虚假信息暴露风险估计。
研究问题3:我们能否为人们采取措施或使他们免受虚假信息的影响?
重点评估该领域不同揭穿方法的相对有效性,以及如何将揭穿(治疗性)和预防干预措施结合起来,以最大限度地提高其保护性能。
建模和评估心理接种(干预)方法如何在网上传播并影响社会媒体上及现实世界的分享行为。
Box2 定义和操作虚假信息的挑战
虚假信息最常被引用的一种定义是“在形式上模仿新闻媒体内容,但在组织过程或意图上不模仿的编造信息”[119]。这个定义意味着,决定一个故事是否是虚假信息的重要因素是新闻或编辑过程。其他定义也反映了类似的观点,即虚假信息制作者不遵守编辑规范,“虚假性”的定义属性发生在出版者层面,而不是故事层面。然而,其他人则持完全不同的观点,他们或者从内容的真实性,或者从是否存在制作内容所使用的常用技术的角度来界定虚假信息[109]。
可以说,有些定义过于狭隘,因为新闻报道不需要完全错误才能产生误导性。一个非常突出的例子来自《芝加哥论坛报》,这是一家普遍可信的媒体,在2021年1月重新发表了一篇题为“一个健康的医生在注射新冠疫苗两周后死亡”的文章。这个故事不会因为来源或内容而被归类为虚假,因为单独考虑时,这些事件是真实的。然而,在发布时没有证据证明这种因果关系,因此认为这位医生是因为注射了新冠疫苗才死亡的,这种说法极具误导性,甚至被认为是不道德的。这是一个不起眼的例子,2021年初,它在 Facebook 上的浏览量超过了5000万次[121]。
纯粹基于内容的定义面临的另一个潜在挑战是,当专家对一个公共卫生问题的共识迅速形成,并受到不确定性和变化的影响时,对可能是真是假的定义可能会随着时间的推移而发生变化,使过于简单化的“真”与”假”分类成为一种潜在的不稳定属性。例如,尽管新闻媒体最初声称布洛芬会加重新冠的症状,但随着更多证据的出现,这一说法后来被撤回。问题在于,研究人员经常询问人们,他们是否准确或可靠地鉴别一系列真的或假的新闻标题,这些标题要么是研究人员根据对虚假信息的不同定义创建的,要么是他们筛选的。
对结果的测量也存在差异;有时,相关的结果测量标准是虚假信息的易感性,有时是真假新闻检测的差异,或所谓“真相识别”。使用经心理测量验证的标题集的唯一现有工具是最近的“虚假信息易感性测试”,这是一种对新闻真实性识别的度量方法,根据测试群体进行了标准化。总体而言,这意味着数以百计新出现的关于虚假信息的专题研究,其结果测量并不标准化,也不总是容易比较。
一、易感性
一、易感性
1.1 疏忽解释
1.2 动机推理解释
1.3 易感性:局限性和未来研究
二、传播
二、传播
2.1 测量信息流行病
2.2 接触并不等于感染
2.3 传播:局限性和未来研究
三、免疫
三、免疫
3.1 治疗方法:事实核查和揭露真相
图1. 有效揭穿虚假信息的最佳实践建议。一个有效的揭穿真相的信息应该以事实为开端,并以一种简单而难忘的方式呈现出来。然后应该对听众发布对虚假信息的警告(不要重复这个虚假信息)。随后识别和揭露用来误导人们的操纵技巧。最后重复事实,强调正确的解释。
3.2 揭露真相:局限与未来研究
3.3 预防性措施:虚假信息的心理预防理论
3.4 预防性措施:局限与未来研究
总结
总结
参考文献
Zarocostas, J. How to fight an infodemic. Lancet 395, 676 (2020).
Allcott, H. & Gentzkow, M. Social media and fake news in the 2016 election. J. Econ. Perspect. 31, 211–236 (2020).
Grinberg, N. et al. Fake news on Twitter during the 2016 US presidential election. Science 363, 374–378 (2019).
Roozenbeek, J. et al. Susceptibility to misinformation about COVID-19 around the world. R. Soc. Open Sci. 7, 201199 (2020).
Romer, D. & Jamieson, K. H. Conspiracy theories as barriers to controlling the spread of COVID-19 in the US. Soc. Sci. Med. 263, 113356 (2020).
Imhoff, R. & Lamberty, P. A bioweapon or a hoax? The link between distinct conspiracy beliefs about the coronavirus disease (COVID-19) outbreak and pandemic behavior. Soc. Psychol. Personal. Sci. 11, 1110–1118 (2020).
Freeman, D. et al. Coronavirus conspiracy beliefs, mistrust, and compliance with government guidelines in England. Psychol. Med. https://doi.org/10.1017/S0033291720001890 (2020).
Loomba, S. et al. Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA. Nat. Hum. Behav. 5, 337–348 (2021).
Johnson, N. et al. The online competition between pro-and anti-vaccination views. Nature 58, 230–233 (2020).
Aghababaeian, H. et al. Alcohol intake in an attempt to fight COVID-19: a medical myth in Iran. Alcohol 88, 29–32 (2020).
Jolley, D. & Paterson, J. L. Pylons ablaze: examining the role of 5G COVID‐19 conspiracy beliefs and support for violence. Br. J. Soc. Psychol. 59, 628–640 (2020).
Dubé, E. et al. Vaccine hesitancy, vaccine refusal and the anti-vaccine movement: influence, impact and implications. Expert Rev. Vaccines 14, 99–117 (2015).
Armstrong, G. M. et al. A longitudinal evaluation of the Listerine corrective advertising campaign. J. Public Policy Mark. 2, 16–28 (1983).
Albarracin, D. et al. Misleading claims about tobacco products in YouTube videos: experimental effects of misinformation on unhealthy attitudes. J. Medical Internet Res. 20, e9959 (2018).
Krishna, A. & Thompson, T. L. Misinformation about health: a review of health communication and misinformation scholarship. Am. Behav. Sci. 65, 316–332 (2021).
Kucharski, A. Study epidemiology of fake news. Nature 540, 525–525 (2016).
Cinelli, M. et al. The COVID-19 social media infodemic. Sci. Rep. 10, 1–10 (2020).
Scales, D. et al. The COVID-19 infodemic—applying the epidemiologic model to counter misinformation. N. Engl. J. Med 385, 678–681 (2021).
Vraga, E. K. & Bode, L. Defining misinformation and understanding its bounded nature: using expertise and evidence for describing misinformation. Polit. Commun. 37, 136–144 (2020).
Southwell et al. Misinformation as a misunderstood challenge to public health. Am. J. Prev. Med. 57, 282–285 (2019).
Wardle, C. & Derakhshan, H. Information Disorder: toward an Interdisciplinary Framework for Research and Policymaking. Council of Europe report DGI (2017)09 (Council of Europe, 2017).
van der Linden, S. et al. You are fake news: political bias in perceptions of fake news. Media Cult. Soc. 42, 460–470 (2020).
Tandoc, E. C. Jr et al. Defining ‘fake news’ a typology of scholarly definitions. Digit. J. 6, 137–153 (2018).
Allen, J. et al. Evaluating the fake news problem at the scale of the information ecosystem. Sci. Adv. 6, eaay3539 (2020).
Marsh, E. J. & Yang, B. W. in Misinformation and Mass Audiences (eds Southwell, B. G., Thorson, E. A., & Sheble, L) 15–34 (University of Texas Press, 2018).
Dechêne, A. et al. The truth about the truth: a meta-analytic review of the truth effect. Pers. Soc. Psychol. Rev. 14, 238–257 (2010).
Lewis, T. Eight persistent COVID-19 myths and why people believe them. Scientific American. https://www.scientificamerican.com/article/eight-persistent-covid-19-myths-and-why-people-believe-them/ (2020).
Wang, W. C. et al. On known unknowns: fluency and the neural mechanisms of illusory truth. J. Cogn. Neurosci. 28, 739–746 (2016).
Pennycook, G. et al. Prior exposure increases perceived accuracy of fake news. J. Exp. Psychol. Gen. 147, 1865–1880 (2018).
Fazio, L. K. et al. Repetition increases perceived truth equally for plausible and implausible statements. Psychon. Bull. Rev. 26, 1705–1710 (2019).
Fazio, L. K. et al. Knowledge does not protect against illusory truth. J. Exp. Psychol. Gen. 144, 993–1002 (2015).
De Keersmaecker, J. et al. Investigating the robustness of the illusory truth effect across individual differences in cognitive ability, need for cognitive closure, and cognitive style. Pers. Soc. Psychol. Bull. 46, 204–215 (2020).
Guess, A. et al. Less than you think: prevalence and predictors of fake news dissemination on Facebook. Sci. Adv. 5, eaau4586 (2019).
Saunders, J. & Jess, A. The effects of age on remembering and knowing misinformation. Memory 18, 1–11 (2010).
Brashier, N. M. & Schacter, D. L. Aging in an era of fake news. Curr. Dir. Psychol. Sci. 29, 316–323 (2020).
Pennycook, G. & Rand, D. G. Lazy, not biased: susceptibility to partisan fake news is better explained by lack of reasoning than by motivated reasoning. Cognition 188, 39–50 (2019).
Imhoff, R. et al. Conspiracy mentality and political orientation across 26 countries. Nat. Hum. Behav. https://doi.org/10.1038/s41562-021-01258-7 (2022).
Roozenbeek, J. & van der Linden, S. Fake news game confers psychological resistance against online misinformation. Humanit. Soc. Sci. Commun. 5, 1–10 (2019).
Van der Linden, S. et al. The paranoid style in American politics revisited: an ideological asymmetry in conspiratorial thinking. Polit. Psychol. 42, 23–51 (2021).
De keersmaecker, J. & Roets, A. ‘Fake news’: incorrect, but hard to correct. The role of cognitive ability on the impact of false information on social impressions. Intelligence 65, 107–110 (2017).
Bronstein, M. V. et al. Belief in fake news is associated with delusionality, dogmatism, religious fundamentalism, and reduced analytic thinking. J. Appl. Res. Mem. 8, 108–117 (2019).
Greene, C. M. et al. Misremembering Brexit: partisan bias and individual predictors of false memories for fake news stories among Brexit voters. Memory 29, 587–604 (2021).
Gawronski, B. Partisan bias in the identification of fake news. Trends Cogn. Sci. 25, 723–724 (2021).
Rathje, S et al. Meta-analysis reveals that accuracy nudges have little to no effect for US conservatives: Regarding Pennycook et al. (2020). Psychol. Sci. https://doi.org/10.25384/SAGE.12594110.v2 (2021).
Pennycook, G. & Rand, D. G. The psychology of fake news. Trends Cogn. Sci. 22, 388–402 (2021).
van der Linden, S. et al. How can psychological science help counter the spread of fake news? Span. J. Psychol. 24, e25 (2021).
Evans, J. S. B. In two minds: dual-process accounts of reasoning. Trends Cogn. Sci. 7, 454–459 (2003).
Bago, B. et al. Fake news, fast and slow: deliberation reduces belief in false (but not true) news headlines. J. Exp. Psychol. Gen. 149, 1608–1613 (2020).
Scherer, L. D. et al. Who is susceptible to online health misinformation? A test of four psychosocial hypotheses. Health Psychol. 40, 274–284 (2021).
Pennycook, G. et al. Fighting COVID-19 misinformation on social media: experimental evidence for a scalable accuracy-nudge intervention. Psychol. Sci. 31, 770–780 (2020).
Pennycook, G. et al. Shifting attention to accuracy can reduce misinformation online. Nature 592, 590–595 (2021).
Swami, V. et al. Analytic thinking reduces belief in conspiracy theories. Cognition 133, 572–585 (2014).
Kunda, Z. The case for motivated reasoning. Psychol. Bull. 108, 480–498 (1990).
Kahan, D. M. in Emerging Trends in the Social and Behavioral sciences (eds Scott, R. & Kosslyn, S.) 1–16 (John Wiley & Sons, 2016).
Bolsen, T. et al. The influence of partisan motivated reasoning on public opinion. Polit. Behav. 36, 235–262 (2014).
Osmundsen, M. et al. Partisan polarization is the primary psychological motivation behind political fake news sharing on Twitter. Am. Polit. Sci. Rev. 115, 999–1015 (2021).
Van Bavel, J. J. et al. Political psychology in the digital (mis) information age: a model of news belief and sharing. Soc. Issues Policy Rev. 15, 84–113 (2020).
Rathje, S. et al. Out-group animosity drives engagement on social media. Proc. Natl Acad. Sci. USA 118, e2024292118 (2021).
Kahan, D. M. et al. Motivated numeracy and enlightened self-government. Behav. Public Policy 1, 54–86 (2017).
Kahan, D. M. et al. The polarizing impact of science literacy and numeracy on perceived climate change risks. Nat. Clim. Chang. 2, 732–735 (2012).
Drummond, C. & Fischhoff, B. Individuals with greater science literacy and education have more polarized beliefs on controversial science topics. Proc. Natl Acad. Sci. USA 114, 9587–9592 (2017).
Traberg, C. S. & van der Linden, S. Birds of a feather are persuaded together: perceived source credibility mediates the effect of political bias on misinformation susceptibility. Pers. Individ. Differ. 185, 111269 (2022).
Roozenbeek, J. et al. How accurate are accuracy-nudge interventions? A preregistered direct replication of Pennycook et al. (2020). Psychol. Sci. 32, 1169–1178 (2021).
Persson, E. et al. A preregistered replication of motivated numeracy. Cognition 214, 104768 (2021).
Connor, P. et al. Motivated numeracy and active reasoning in a Western European sample. Behav. Public Policy 1–23 (2020).
van der Linden, S. et al. Scientific agreement can neutralize politicization of facts. Nat. Hum. Behav. 2, 2–3 (2018).
Tappin, B. M. et al. Rethinking the link between cognitive sophistication and politically motivated reasoning. J. Exp. Psychol. Gen. 150, 1095–1114 (2021).
Tappin, B. M. et al. Thinking clearly about causal inferences of politically motivated reasoning: why paradigmatic study designs often undermine causal inference. Curr. Opin. Behav. Sci. 34, 81–87 (2020).
Druckman, J. N. & McGrath, M. C. The evidence for motivated reasoning in climate change preference formation. Nat. Clim. Chang. 9, 111–119 (2019).
Juul, J. L. & Ugander, J. Comparing information diffusion mechanisms by matching on cascade size. Proc. Natl. Acad. Sci. USA 118, e210078611 (2021).
Vosoughi, S. et al. The spread of true and false news online. Science 359, 1146–1151 (2018).
Cinelli, M. et al. The echo chamber effect on social media. Proc. Natl Acad. Sci. USA 118, e2023301118 (2021).
Guess, A. et al. Exposure to untrustworthy websites in the 2016 US election. Nat. Hum. Behav. 4, 472–480 (2020).
Yang, K. C. et al. The COVID-19 infodemic: Twitter versus Facebook. Big Data Soc. 8, 20539517211013861 (2021).
Del Vicario, M. et al. The spreading of misinformation online. Proc. Natl Acad. Sci. USA 113, 554–559 (2016).
Zollo, F. et al. Debunking in a world of tribes. PloS ONE 12, e0181821 (2017).
Guess, A. M. (Almost) everything in moderation: new evidence on Americans’ online media diets. Am. J. Pol. Sci. 65, 1007–1022 (2021).
Törnberg, P. Echo chambers and viral misinformation: modeling fake news as complex contagion. PLoS ONE 13, e0203958 (2018).
Choi, D. et al. Rumor propagation is amplified by echo chambers in social media. Sci. Rep. 10, 1–10 (2020).
Eurobarometer on Fake News and Online Disinformation. European Commission https://ec.europa.eu/digital-single-market/en/news/final-results-eurobarometer-fake-news-and-online-disinformation (2018).
Altay, S. et al. ‘If this account is true, it is most enormously wonderful’: interestingness-if-true and the sharing of true and false news. Digit. Journal. https://doi.org/10.1080/21670811.2021.1941163 (2021).
Kalla, J. L. & Broockman, D. E. The minimal persuasive effects of campaign contact in general elections: evidence from 49 field experiments. Am. Political Sci. Rev. 112, 148–166 (2018).
Matz, S. C. et al. Psychological targeting as an effective approach to digital mass persuasion. Proc. Natl Acad. Sci. USA 114, 12714–12719 (2017).
Paynter, J. et al. Evaluation of a template for countering misinformation—real-world autism treatment myth debunking. PloS ONE 14, e0210746 (2019).
Smith, P. et al. Correcting over 50 years of tobacco industry misinformation. Am. J. Prev. Med 40, 690–698 (2011).
Yousuf, H. et al. A media intervention applying debunking versus non-debunking content to combat vaccine misinformation in elderly in the Netherlands: a digital randomised trial. EClinicalMedicine 35, 100881 (2021).
Walter, N. & Murphy, S. T. How to unring the bell: a meta-analytic approach to correction of misinformation. Commun. Monogr. 85, 423–441 (2018).
Chan, M. P. S. et al. Debunking: a meta-analysis of the psychological efficacy of messages countering misinformation. Psychol. Sci. 28, 1531–1546 (2017).
Walter, N. et al. Evaluating the impact of attempts to correct health misinformation on social media: a meta-analysis. Health Commun. 36, 1776–1784 (2021).
Aikin, K. J. et al. Correction of overstatement and omission in direct-to-consumer prescription drug advertising. J. Commun. 65, 596–618 (2015).
Lewandowsky, S. et al. The Debunking Handbook 2020 https://www.climatechangecommunication.org/wp-content/uploads/2020/10/DebunkingHandbook2020.pdf (2020).
Lewandowsky, S. et al. Misinformation and its correction: continued influence and successful debiasing. Psychol. Sci. Publ. Int 13, 106–131 (2012).
Swire-Thompson, B. et al. Searching for the backfire effect: measurement and design considerations. J. Appl. Res. Mem. Cogn. 9, 286–299 (2020).
Nyhan, B. et al. Effective messages in vaccine promotion: a randomized trial. Pediatrics 133, e835–e842 (2014).
Nyhan, B. & Reifler, J. Does correcting myths about the flu vaccine work? An experimental evaluation of the effects of corrective information. Vaccine 33, 459–464 (2015).
Wood, T. & Porter, E. The elusive backfire effect: mass attitudes’ steadfast factual adherence. Polit. Behav. 41, 135–163 (2019).
Haglin, K. The limitations of the backfire effect. Res. Politics https://doi.org/10.1177/2053168017716547 (2017).
Chido-Amajuoyi et al. Exposure to court-ordered tobacco industry antismoking advertisements among US adults. JAMA Netw. Open 2, e196935 (2019).
Walter, N. & Tukachinsky, R. A meta-analytic examination of the continued influence of misinformation in the face of correction: how powerful is it, why does it happen, and how to stop it? Commun. Res 47, 155–177 (2020).
Papageorgis, D. & McGuire, W. J. The generality of immunity to persuasion produced by pre-exposure to weakened counterarguments. J. Abnorm. Psychol. 62, 475–481 (1961).
Papageorgis, D. & McGuire, W. J. The generality of immunity to persuasion produced by pre-exposure to weakened counterarguments. J. Abnorm. Psychol. 62, 475–481 (1961).\
Lewandowsky, S. & van der Linden, S. Countering misinformation and fake news through inoculation and prebunking. Eur. Rev. Soc. Psychol. 32, 348–384 (2021).
Jolley, D. & Douglas, K. M. Prevention is better than cure: addressing anti vaccine conspiracy theories. J. Appl. Soc. Psychol. 47, 459–469 (2017).
Compton, J. et al. Inoculation theory in the post‐truth era: extant findings and new frontiers for contested science, misinformation, and conspiracy theories. Soc. Personal. Psychol. 15, e12602 (2021).
Banas, J. A. & Rains, S. A. A meta-analysis of research on inoculation theory. Commun. Monogr. 77, 281–311 (2010).
Compton, J. et al. Persuading others to avoid persuasion: Inoculation theory and resistant health attitudes. Front. Psychol. 7, 122 (2016).
Iles, I. A. et al. Investigating the potential of inoculation messages and self-affirmation in reducing the effects of health misinformation. Sci. Commun. 43, 768–804 (2021).
Cook et al. Neutralizing misinformation through inoculation: Exposing misleading argumentation techniques reduces their influence. PloS ONE 12, e0175799 (2017).
van der Linden, S., & Roozenbeek, J. in The Psychology of Fake News: Accepting, Sharing, and Correcting Misinformation (eds Greifeneder, R., Jaffe, M., Newman, R., & Schwarz, N.) 147–169 (Psychology Press, 2020).
Basol, M. et al. Towards psychological herd immunity: cross-cultural evidence for two prebunking interventions against COVID-19 misinformation. Big Data Soc. 8, 20539517211013868 (2021).
Sagarin, B. J. et al. Dispelling the illusion of invulnerability: the motivations and mechanisms of resistance to persuasion. J. Pers. Soc. Psychol. 83, 526–541 (2002).
van der Linden, S. et al. Inoculating the public against misinformation about climate change. Glob. Chall. 1, 1600008 (2017).
Basol, M. et al. Good news about bad news: gamified inoculation boosts confidence and cognitive immunity against fake news. J. Cogn. 3, 2 (2020).
Basol, M. et al. Good news about bad news: gamified inoculation boosts confidence and cognitive immunity against fake news. J. Cogn. 3, 2 (2020).
Roozenbeek, J., & van der Linden, S. Breaking Harmony Square: a game that ‘inoculates’ against political misinformation. The Harvard Kennedy School Misinformation Review https://doi.org/10.37016/mr-2020-47 (2020).
What is Go Viral? World Health Organization https://www.who.int/news/item/23-09-2021-what-is-go-viral (WHO, 2021).
Abbasi, J. COVID-19 conspiracies and beyond: how physicians can deal with patients’ misinformation. JAMA 325, 208–210 (2021).
Compton, J. Prophylactic versus therapeutic inoculation treatments for resistance to influence. Commun. Theory 30, 330–343 (2020).
Lazer, D. M. et al. The science of fake news. Science 359, 1094–1096 (2018).
Pennycook, G. & Rand, D. G. Who falls for fake news? The roles of bullshit receptivity, overclaiming, familiarity, and analytic thinking. J. Pers. 88, 185–200 (2020).
Benton, J. Facebook sent a ton of traffic to a Chicago Tribune story. So why is everyone mad at them? NiemanLab https://www.niemanlab.org/2021/08/facebook-sent-a-ton-of-traffic-to-a-chicago-tribune-story-so-why-is-everyone-mad-at-them/ (2021).
Poutoglidou, F. et al. Ibuprofen and COVID-19 disease: separating the myths from facts. Expert Rev. Respir. Med 15, 979–983 (2021).
Maertens, R. et al. The Misinformation Susceptibility Test (MIST): a psychometrically validated measure of news veracity discernment. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/gk68h (2021).
(参考文献可上下滑动查看)
内容来源 / 极智俱乐部
今日编辑 / 辛昊航
责任编辑 / 戴晟昱
城市大脑研究院提供开放研讨平台,所有文章仅代表作者个人观点,欢迎共同探讨。原创文章,转载请注明来源:城市大脑研究院。部分图片来源于网络,如涉及版权问题,敬请及时联系我们。